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2.4 Hierarchical Finite State Machine (HFSM)  
& Behavior Tree (BT) 
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Problems of FSM 
• N states -> N x N 

possible Transitions 
• N can be very large 
• And NxN is even 

larger 
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Other Problems with FSM 
• Maintainability: when adding or removing a state, it is 

necessary to change the conditions of all other states that 
have transition to the new or old one. Big changes are 
more susceptible to errors that may pass unnoticed. 

• Scalability: FSMs with many states lose the advantage of 
graphical readability, becoming a nightmare of boxes and 
arrows.  

• Reusability: as the conditions are inside the states, the 
coupling between the states is strong, being practically 
impossible to use the same behavior in multiple projects. 
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Hierarchical Finite State Machine 
•  a.k.a StateCharts (first introduced by David Harel) 
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Harel’s StateCharts 
• Super-states : groups of states.  

•  These super-states too can have transitions, which allows you to 
prevent redundant transitions by applying them only once to super-
states rather than each state individually. 

• Generalized transitions : transitions between 
Super-states 
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Simplest Example 
• Clustering / Super State 
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Obstacle Avoidance Example 
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Note: this algorithm can cause “oscillation” (robot oscillates turning left and right) 
in case of concave obstacle. But we discussed in class how to solve that 

Avoidance 
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HFSM 
• Refinement 
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Behavior Inheritance  
• HFSM combines hierarchy with programming-by-
difference, which is otherwise known in software 
as inheritance.  

• As class inheritance allows subclasses to adapt 
to new environments, behavioral inheritance 
allows substates to mutate by adding new 
behavior or by overriding existing behavior.  

• State nesting introduces another fundamental 
type of inheritance, called behavioral inheritance 
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Behavior Inheritance  
• Nested states can introduce new behavior by adding new 

state transitions or reactions (also known as internal 
transitions) for events that are not recognized by super-
states. This corresponds to adding new methods to a 
subclass.  
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Good Enough? 
HFSM certainly provide a way to reuse transitions, 
but it’s still not an ideal solution. The problem is 
that: 

• Reusing transitions isn’t trivial to achieve, and requires 
a lot of thought when you have to create logic for many 
different contexts (e.g. dynamic goals, actor status). 

• Editing transitions manually is rather tedious in the first 
place. 

• Another solution is to focus on making individual states 
modular so they can be easily reused as-is different 
parts of the logic. Behavior trees take this approach  
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Behavior Trees (BT) 
• Mathematical Model of Plan Execution – describe 
switching between a finite set of tasks in a 
modular fashion 

• Originated from Game Industry, as a powerful 
way to describe AI for “NPC” 
• Halo, Bioshock, Spore 
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More Formally (Precisely)  
• Directed Acyclic Graph 
• Four types of nodes:  

• Root node – no parent, one child (ticks) 
• Composite node (“Control flow ”) – one parent, and one 

or more children 
•  Leaf node (“Execution”) – one parent, no child (Leaves)  
• Decorator node (“Operator”) – one parent, one child 
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Composite Nodes 
A composite node can have one or more 
children. The node is responsible to 
propagate the tick signal to its children, 
respecting some order (flow control) 
•  The priority node (sometimes called 

selector) ticks its children sequentially until 
one of them returns SUCCESS, RUNNING or 
ERROR. If all children return the failure state, 
the priority also returns FAILURE. 

•  The sequence node ticks its children 
sequentially until one of them returns 
FAILURE, RUNNING or ERROR. If all children 
return the success state, the sequence also 
returns SUCCESS. 

•  The parallel node ticks all children at the 
same time, allowing them to work in parallel.  
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Decorator Nodes 
Decorators are special nodes that can 
have only a single child. The goal of the 
decorator is to change the behavior of 
the child by manipulating the returning 
value or changing its ticking frequency 
• Repeater 
•  Inverter 
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Leaf Nodes  
The leaf nodes are the primitive building 
blocks of the behavior tree. They 
perform some computation and return a 
state value (functional) 
• A condition node checks whether a 

certain condition has been met or not 
(e.g. “obstacle distance’”) 

• An action node performs 
computations to change the agent 
state (e.g., the actions of a robot may 
involve sending motor signals) 
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Node (State) Values 
• SUCCESS: returned when a criterion has been met by a 

condition node or an action node has been completed 
successfully; 

•  FAILURE: returned when a criterion has not been met by 
a condition node or an action node could not finish its 
execution for any reason; 

• RUNNING: returned when an action node has been 
initialized but is still waiting the its resolution. 

• ERROR: returned when some unexpected error 
happened in the tree, probably by a programming error 
(trying to verify an undefined variable). Its use depends on 
the final implementation of the leaf nodes. 
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Running of a BT 
•  The execution of a BT starts from the root which sends 

ticks with a certain frequency to its child. A tick is an 
enabling signal that allows the execution of a child. When 
the execution of a node in the BT is allowed, it returns to 
the parent a status running if its execution has not 
finished yet, success if it has achieved its goal, or failure 
otherwise. 



Stanford University (cs123.stanford.edu)  © Kyong-Sok (KC) Chang & David Zhu 

BT Execution 
• Depth-First Traversal 
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BT Execution 
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Tree Traversal Issue 
• Always start from root node 
•  This isn’t a very efficient way to do things, especially when 

the behavior tree gets deeper as its developed and 
expanded during development. 

• Store any currently processing nodes so they can be 
ticked directly within the behavior tree engine rather than 
per tick traversal of the entire tree 
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Benefits of BT 
• Maintainability: transitions in BT are defined by the 

structure, not by conditions inside the states. Because of 
this, nodes can be designed independent from each other, 
thus, when adding or removing new nodes (or even 
subtrees) in a small part of the tree, it is not necessary to 
change other parts of the model. 

• Scalability: when a BT have many nodes, it can be 
decomposed into small sub-trees saving the readability of 
the graphical model. 

• Reusability: due to the independence of nodes in BT, the 
subtrees are also independent. This allows the reuse of 
nodes or subtrees among other trees or projects. 


