
Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

2.4 Hierarchical Finite State Machine (HFSM)
& Behavior Tree (BT)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Problems of FSM
• N states -> N x N

possible Transitions
• N can be very large
• And NxN is even

larger

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Other Problems with FSM
• Maintainability: when adding or removing a state, it is

necessary to change the conditions of all other states that
have transition to the new or old one. Big changes are
more susceptible to errors that may pass unnoticed.

• Scalability: FSMs with many states lose the advantage of
graphical readability, becoming a nightmare of boxes and
arrows.

• Reusability: as the conditions are inside the states, the
coupling between the states is strong, being practically
impossible to use the same behavior in multiple projects.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Hierarchical Finite State Machine
•  a.k.a StateCharts (first introduced by David Harel)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Harel’s StateCharts
• Super-states : groups of states.

•  These super-states too can have transitions, which allows you to
prevent redundant transitions by applying them only once to super-
states rather than each state individually.

• Generalized transitions : transitions between
Super-states

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Simplest Example
• Clustering / Super State

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Obstacle Avoidance Example

Turn
Left

Turn
Right

Moving
Straight

obs_right

obs_free

obs_free

obs_left

obs_right

obs_left obs_right

obs_left

Turn
Left

Turn
Right

Moving
Straight

obs_right

obs_free

obs_left

obs_right

obs_left

obs_left
obs_right

Note: this algorithm can cause “oscillation” (robot oscillates turning left and right)
in case of concave obstacle. But we discussed in class how to solve that

Avoidance

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

HFSM
• Refinement

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Behavior Inheritance
• HFSM combines hierarchy with programming-by-
difference, which is otherwise known in software
as inheritance.

• As class inheritance allows subclasses to adapt
to new environments, behavioral inheritance
allows substates to mutate by adding new
behavior or by overriding existing behavior.

• State nesting introduces another fundamental
type of inheritance, called behavioral inheritance

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Behavior Inheritance
• Nested states can introduce new behavior by adding new

state transitions or reactions (also known as internal
transitions) for events that are not recognized by super-
states. This corresponds to adding new methods to a
subclass.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Good Enough?
HFSM certainly provide a way to reuse transitions,
but it’s still not an ideal solution. The problem is
that:

• Reusing transitions isn’t trivial to achieve, and requires
a lot of thought when you have to create logic for many
different contexts (e.g. dynamic goals, actor status).

• Editing transitions manually is rather tedious in the first
place.

• Another solution is to focus on making individual states
modular so they can be easily reused as-is different
parts of the logic. Behavior trees take this approach

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Behavior Trees (BT)
• Mathematical Model of Plan Execution – describe
switching between a finite set of tasks in a
modular fashion

• Originated from Game Industry, as a powerful
way to describe AI for “NPC”
• Halo, Bioshock, Spore

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

More Formally (Precisely)
• Directed Acyclic Graph
• Four types of nodes:

• Root node – no parent, one child (ticks)
• Composite node (“Control flow ”) – one parent, and one

or more children
•  Leaf node (“Execution”) – one parent, no child (Leaves)
• Decorator node (“Operator”) – one parent, one child

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Composite Nodes
A composite node can have one or more
children. The node is responsible to
propagate the tick signal to its children,
respecting some order (flow control)
•  The priority node (sometimes called

selector) ticks its children sequentially until
one of them returns SUCCESS, RUNNING or
ERROR. If all children return the failure state,
the priority also returns FAILURE.

•  The sequence node ticks its children
sequentially until one of them returns
FAILURE, RUNNING or ERROR. If all children
return the success state, the sequence also
returns SUCCESS.

•  The parallel node ticks all children at the
same time, allowing them to work in parallel.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Decorator Nodes
Decorators are special nodes that can
have only a single child. The goal of the
decorator is to change the behavior of
the child by manipulating the returning
value or changing its ticking frequency
• Repeater
•  Inverter

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Leaf Nodes
The leaf nodes are the primitive building
blocks of the behavior tree. They
perform some computation and return a
state value (functional)
• A condition node checks whether a

certain condition has been met or not
(e.g. “obstacle distance’”)

• An action node performs
computations to change the agent
state (e.g., the actions of a robot may
involve sending motor signals)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Node (State) Values
• SUCCESS: returned when a criterion has been met by a

condition node or an action node has been completed
successfully;

•  FAILURE: returned when a criterion has not been met by
a condition node or an action node could not finish its
execution for any reason;

• RUNNING: returned when an action node has been
initialized but is still waiting the its resolution.

• ERROR: returned when some unexpected error
happened in the tree, probably by a programming error
(trying to verify an undefined variable). Its use depends on
the final implementation of the leaf nodes.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Running of a BT
•  The execution of a BT starts from the root which sends

ticks with a certain frequency to its child. A tick is an
enabling signal that allows the execution of a child. When
the execution of a node in the BT is allowed, it returns to
the parent a status running if its execution has not
finished yet, success if it has achieved its goal, or failure
otherwise.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

BT Execution
• Depth-First Traversal

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

BT Execution

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Tree Traversal Issue
• Always start from root node
•  This isn’t a very efficient way to do things, especially when

the behavior tree gets deeper as its developed and
expanded during development.

• Store any currently processing nodes so they can be
ticked directly within the behavior tree engine rather than
per tick traversal of the entire tree

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Benefits of BT
• Maintainability: transitions in BT are defined by the

structure, not by conditions inside the states. Because of
this, nodes can be designed independent from each other,
thus, when adding or removing new nodes (or even
subtrees) in a small part of the tree, it is not necessary to
change other parts of the model.

• Scalability: when a BT have many nodes, it can be
decomposed into small sub-trees saving the readability of
the graphical model.

• Reusability: due to the independence of nodes in BT, the
subtrees are also independent. This allows the reuse of
nodes or subtrees among other trees or projects.

