
Transformers
and Large
Language
Models

Introduction to Large Language
Models

Language models

• Remember the simple n-gram language model
• Assigns probabilities to sequences of words
• Generate text by sampling possible next words
• Is trained on counts computed from lots of text

• Large language models are similar and different:
• Assigns probabilities to sequences of words
• Generate text by sampling possible next words
• Are trained by learning to guess the next word

Neural Large Language Models (LLMs)

• Self-supervised learners
• Take a text, remove a word
• Use your neural model to guess what the word was
• If the model is wrong, use stochastic gradient descent

to make the model guess better next time
• Advantages (?):
• All we need is a lot of text (GPT3: 500 billion tokens)
• (And a lot of compute)

LLMs are built out of transformers
Transformer: a specific kind of network architecture, like a
fancier feedforward network, but based on attention

Provided proper attribution is provided, Google hereby grants permission to
reproduce the tables and figures in this paper solely for use in journalistic or

scholarly works.

Attention Is All You Need

Ashish Vaswani⇤
Google Brain

avaswani@google.com

Noam Shazeer⇤
Google Brain

noam@google.com

Niki Parmar⇤
Google Research

nikip@google.com

Jakob Uszkoreit⇤
Google Research
usz@google.com

Llion Jones⇤
Google Research

llion@google.com

Aidan N. Gomez⇤ †

University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser⇤
Google Brain

lukaszkaiser@google.com

Illia Polosukhin⇤ ‡

illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

⇤Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started
the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and
has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention and the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and
tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.

†Work performed while at Google Brain.
‡Work performed while at Google Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

ar
X

iv
:1

70
6.

03
76

2v
7

 [c
s.C

L]
 2

 A
ug

 2
02

3

A very approximate timeline

1990 Static Word Embeddings
2003 Neural Language Model
2008 Multi-Task Learning
2015 Attention
2017 Transformer
2018 Contextual Word Embeddings and Pretraining
2019 Prompting

A picture of a transformer language model

Input
Embeddings

Layers of
Transformer

Blocks

Softmax over
Vocabulary

So long and thanks for

long and thanks forOutput all

…

…

…

Linear Layer

Transformers
and Large
Language
Models

Introduction to Large Language
Models

Transformers
and Large
Language
Models

Attention

Instead of starting with the big picture

Input
Embeddings

Layers of
Transformer

Blocks

Softmax over
Vocabulary

So long and thanks for

long and thanks forOutput all

…

…

…

Linear Layer

Input
Embeddings

Layers of
Transformer

Blocks

Softmax over
Vocabulary

So long and thanks for

long and thanks forOutput all

…

…

…

Linear Layer

Let's consider the embeddings for an individual word from a particular layer

Problem with static embeddings (word2vec)

They are static! The embedding for a word doesn't reflect how its
meaning changes in context.

The chicken didn't cross the street because it was too tired

What is the meaning represented in the static embedding for "it"?

Contextual Embeddings

• Intuition: a representation of meaning of a word
should be different in different contexts!

• Contextual Embedding: each word has a different
vector that expresses different meanings
depending on the surrounding words

• How to compute contextual embeddings?
• Attention

Contextual Embeddings

The chicken didn't cross the street because it

What should be the properties of "it"?

The chicken didn't cross the street because it was too tired
The chicken didn't cross the street because it was too trafficy

At this point in the sentence, it's probably referring to either the chicken or the street

Intuition of attention

Build up the contextual embedding from a word by
selectively integrating information from all the
neighboring words
We say that a word "attends to" some neighboring
words more than others

Intuition of attention:

test

Th
e

an
im

al

di
dn

’t

cr
os

s

th
e

st
re

et

be
ca

us
e

it wa
s

to
o

tir
ed

Th
e

an
im

al

di
dn

’t

cr
os

s

th
e

st
re

et

be
ca

us
e

it wa
s

to
o

tir
ed

Layer 6

Layer 5

self-attention distribution

Attention definition

A mechanism for helping compute the embedding for
a token by selectively attending to and integrating
information from surrounding tokens (at the previous
layer).

More formally: a method for doing a weighted sum of
vectors.

Attention is left-to-right

Self-Attention
Layer

x1

a1

x2

a2 a3 a4 a5

x3 x4 x5

Simplified version of attention: a sum of prior words
weighted by their similarity with the current word

Given a sequence of token embeddings:
 x1 x2 x3 x4 x5 xi

Produce: ai = a weighted sum of x1 through x5
Weighted by their similarity to xi

10.1 • THE TRANSFORMER: A SELF-ATTENTION NETWORK 5

Self-Attention
Layer

x1

a1

x2

a2 a3 a4 a5

x3 x4 x5

Figure 10.2 Information flow in a causal (or masked) self-attention model. In processing
each element of the sequence, the model attends to all the inputs up to, and including, the
current one. Unlike RNNs, the computations at each time step are independent of all the
other steps and therefore can be performed in parallel.

10.1.3 Self-attention more formally

We’ve given the intuition of self-attention (as a way to compute representations of a
word at a given layer by integrating information from words at the previous layer)
and we’ve defined context as all the prior words in the input. Let’s now introduce
the self-attention computation itself.

The core intuition of attention is the idea of comparing an item of interest to a
collection of other items in a way that reveals their relevance in the current context.
In the case of self-attention for language, the set of comparisons are to other words
(or tokens) within a given sequence. The result of these comparisons is then used to
compute an output sequence for the current input sequence. For example, returning
to Fig. 10.2, the computation of a3 is based on a set of comparisons between the
input x3 and its preceding elements x1 and x2, and to x3 itself.

How shall we compare words to other words? Since our representations for
words are vectors, we’ll make use of our old friend the dot product that we used
for computing word similarity in Chapter 6, and also played a role in attention in
Chapter 9. Let’s refer to the result of this comparison between words i and j as a
score (we’ll be updating this equation to add attention to the computation of this
score):

Verson 1: score(xi,x j) = xi ·x j (10.4)

The result of a dot product is a scalar value ranging from �• to •, the larger
the value the more similar the vectors that are being compared. Continuing with our
example, the first step in computing y3 would be to compute three scores: x3 · x1,
x3 ·x2 and x3 ·x3. Then to make effective use of these scores, we’ll normalize them
with a softmax to create a vector of weights, ai j, that indicates the proportional
relevance of each input to the input element i that is the current focus of attention.

ai j = softmax(score(xi,x j)) 8 j  i (10.5)

=
exp(score(xi,x j))Pi

k=1 exp(score(xi,xk))
8 j  i (10.6)

Of course, the softmax weight will likely be highest for the current focus element
i, since vecxi is very similar to itself, resulting in a high dot product. But other
context words may also be similar to i, and the softmax will also assign some weight
to those words.

Given the proportional scores in a , we generate an output value ai by summing

10.1 • THE TRANSFORMER: A SELF-ATTENTION NETWORK 5

Self-Attention
Layer

x1

a1

x2

a2 a3 a4 a5

x3 x4 x5

Figure 10.2 Information flow in a causal (or masked) self-attention model. In processing
each element of the sequence, the model attends to all the inputs up to, and including, the
current one. Unlike RNNs, the computations at each time step are independent of all the
other steps and therefore can be performed in parallel.

10.1.3 Self-attention more formally

We’ve given the intuition of self-attention (as a way to compute representations of a
word at a given layer by integrating information from words at the previous layer)
and we’ve defined context as all the prior words in the input. Let’s now introduce
the self-attention computation itself.

The core intuition of attention is the idea of comparing an item of interest to a
collection of other items in a way that reveals their relevance in the current context.
In the case of self-attention for language, the set of comparisons are to other words
(or tokens) within a given sequence. The result of these comparisons is then used to
compute an output sequence for the current input sequence. For example, returning
to Fig. 10.2, the computation of a3 is based on a set of comparisons between the
input x3 and its preceding elements x1 and x2, and to x3 itself.

How shall we compare words to other words? Since our representations for
words are vectors, we’ll make use of our old friend the dot product that we used
for computing word similarity in Chapter 6, and also played a role in attention in
Chapter 9. Let’s refer to the result of this comparison between words i and j as a
score (we’ll be updating this equation to add attention to the computation of this
score):

Verson 1: score(xi,x j) = xi ·x j (10.4)

The result of a dot product is a scalar value ranging from �• to •, the larger
the value the more similar the vectors that are being compared. Continuing with our
example, the first step in computing y3 would be to compute three scores: x3 · x1,
x3 ·x2 and x3 ·x3. Then to make effective use of these scores, we’ll normalize them
with a softmax to create a vector of weights, ai j, that indicates the proportional
relevance of each input to the input element i that is the current focus of attention.

ai j = softmax(score(xi,x j)) 8 j  i (10.5)

=
exp(score(xi,x j))Pi

k=1 exp(score(xi,xk))
8 j  i (10.6)

Of course, the softmax weight will likely be highest for the current focus element
i, since vecxi is very similar to itself, resulting in a high dot product. But other
context words may also be similar to i, and the softmax will also assign some weight
to those words.

Given the proportional scores in a , we generate an output value ai by summing

6 CHAPTER 10 • TRANSFORMERS AND LARGE LANGUAGE MODELS

the inputs seen so far, each weighted by its a value.

ai =
X

ji

ai jx j (10.7)

The steps embodied in Equations 10.4 through 10.7 represent the core of an
attention-based approach: a set of comparisons to relevant items in some context,
a normalization of those scores to provide a probability distribution, followed by a
weighted sum using this distribution. The output a is the result of this straightfor-
ward computation over the inputs.

This kind of simple attention can be useful, and indeed we saw in Chapter 9
how to use this simple idea of attention for LSTM-based encoder-decoder models
for machine translation. But transformers allow us to create a more sophisticated
way of representing how words can contribute to the representation of longer inputs.
Consider the three different roles that each input embedding plays during the course
of the attention process.

• As the current focus of attention when being compared to all of the other
preceding inputs. We’ll refer to this role as a query.query

• In its role as a preceding input being compared to the current focus of atten-
tion. We’ll refer to this role as a key.key

• And finally, as a value used to compute the output for the current focus ofvalue

attention.

To capture these three different roles, transformers introduce weight matrices
WQ, WK, and WV. These weights will be used to project each input vector xi into
a representation of its role as a key, query, or value.

qi = xiW
Q; ki = xiWK; vi = xiW

V (10.8)

The inputs x and outputs y of transformers, as well as the intermediate vectors after
the various layers like the attention output vector a, all have the same dimensionality
1⇥ d. We’ll have a dimension dk for the key and query vectors, and a separate
dimension dv for the value vectors. In the original transformer work (Vaswani et al.,
2017), d was 512, dk and dv were both 64. The shapes of the transform matrices are
then WQ 2 Rd⇥dk , WK 2 Rd⇥dk , and WV 2 Rd⇥dv .

Given these projections, the score between a current focus of attention, xi, and
an element in the preceding context, x j, consists of a dot product between its query
vector qi and the preceding element’s key vectors k j. This dot product has the right
shape since both the query and the key are of dimensionality 1⇥ dk. Let’s update
our previous comparison calculation to reflect this, replacing Eq. 10.4 with Eq. 10.9:

Verson 2: score(xi,x j) = qi ·k j (10.9)

The ensuing softmax calculation resulting in ai, j remains the same, but the output
calculation for ai is now based on a weighted sum over the value vectors v.

ai =
X

ji

ai jv j (10.10)

Again, the softmax weight ai j will likely be highest for the current focus element
i, and so the value for yi will be most influenced by vi. But the model will also pay
attention to other contextual words if they are similar to i, allowing their values to

Intuition of attention:

test

Th
e

an
im

al

di
dn

’t

cr
os

s

th
e

st
re

et

be
ca

us
e

it wa
s

to
o

tir
ed

Th
e

an
im

al

di
dn

’t

cr
os

s

th
e

st
re

et

be
ca

us
e

it wa
s

to
o

tir
ed

Layer 6

Layer 5

self-attention distribution

x1 x2 x3 x4 x5 x6 x7 xi

Intuition of attention:

test Th
e

an
im

al

di
dn

’t

cr
os

s

th
e

st
re

et

be
ca

us
e

it wa
s

to
o

tir
ed

Th
e

an
im

al

di
dn

’t

cr
os

s

th
e

st
re

et

be
ca

us
e

it wa
s

to
o

tir
ed

Layer 6

Layer 5

self-attention distribution

x1 x2 x3 x4 x5 x6 x7 xi

query

values

Attention

Actually it's slightly more complicated, but I won't get into that
High-level idea: instead of just having a query and a set of values,
each embedding actually also has a key

Intuition of attention:
test

Th
e

an
im

al

di
dn

’t

cr
os

s

th
e

st
re

et

be
ca

us
e

it wa
s

to
o

tir
ed

Th
e

an
im

al

di
dn

’t

cr
os

s

th
e

st
re

et

be
ca

us
e

it wa
s

to
o

tir
ed

Layer 6

Layer 5

self-attention distribution

x1 x2 x3 x4 x5 x6 x7 xi

query

values
k
v

k
v

k
v

k
v

k
v

k
v

k
v

keys

Summary

Attention is a method for enriching the representation of a token by
incorporating contextual information
The result: the embedding for each word will be different in different
contexts!
Contextual embeddings: a representation of word meaning in its
context.

Transformers
and Large
Language
Models

Attention

Transformers
and Large
Language
Models

The rest of the transformer
applied to language modeling

The transformer

Attention is just part of computing embeddings in a transformer.

Let's see more of the mechanism

Reminder: transformer language model

Input
Embeddings

Layers of
Transformer

Blocks

Softmax over
Vocabulary

So long and thanks for

long and thanks forOutput all

…

…

…

Linear Layer

The residual stream: each token gets passed up and
modified

Layer Norm

xi

+

hi-1

Layer Norm

MultiHead
Attention

Feedforward

xi-1 xi+1

hi hi+1

+
……

We'll need nonlinearities, so a feedforward layer

Layer Norm

xi

+

hi-1

Layer Norm

MultiHead
Attention

Feedforward

xi-1 xi+1

hi hi+1

+
……

A transformer is a stack of these blocks

Layer Norm

xi

+

hi-1

Layer Norm

MultiHead
Attention

Feedforward

xi-1 xi+1

hi hi+1

+
……

Layer Norm

xi

+

hi-1

Layer Norm

MultiHead
Attention

Feedforward

xi-1 xi+1

hi hi+1

+
……

Block 1

Block 2

Inputs

X = Composite
Embeddings

(word + position)

Transformer Block

Janet
1

will
2

back
3

Janet will back the bill

the
4

bill
5

+ + + + +

Position
Embeddings

Word
Embeddings

Language modeling head

Layer L
Transformer

Block

Softmax over vocabulary V

Unembedding layer

…

1 x |V|

Logits

Word probabilities

1 x |V|

hL
1

w1 w2 wN

hL
2 hL

N

d x |V|

1 x d

 Unembedding
 layer = ET

y1 y2 y|V|…

u1 u2 u|V|…
Language Model Head

takes hL
N and outputs a

distribution over vocabulary V

The final transformer
model

X x1 x2 … xN

Multihead Self-Attention
Layer Norm
Feedforward
Layer Norm

Layer 1

h1 h2 … hN

Multihead Self-Attention
Layer Norm
Feedforward
Layer Norm

Layer 2

h1 h2 … hN

Multihead Self-Attention
Layer Norm
Feedforward
Layer Norm

Layer L

h1 h2 … hN

…

Sample token to generate
at position N+1

wN+1

w1 w2 … wNInput tokens

P1 P2 … PN Add token + position embeddings +

Language Model
Head

Token probabilities y1 y2 y|V|…

E[w1] E[w2] … E[wN]

Transformers
and Large
Language
Models

The rest of the transformer
applied to language modeling

Large
Language
Models

Pretraining (and how to train
transformers for language
modeling)

Pretraining

The big idea that underlies all the amazing
performance of language models

First pretrain a transformer model on enormous
amounts of text
Then apply it to new tasks.

Intuition of language model training

We just train them to predict the next word!
1. Take a corpus of text
2. At each time step t

i. ask the model to predict the next word
ii. train the model using gradient descent to minimize the

error in this prediction

Intuition of language model training: loss

• Same loss function: cross-entropy loss
• We want the model to assign a high probability to true

word w
• = want loss to be high if the model assigns too low a

probability to w
• CE Loss: The negative log probability that the model

assigns to the true next word w
• If the model assigns too low a probability to w
• We move the model weights in the direction that assigns a

higher probability to w

Training a transformer language model

Input
Embeddings

Transformer
Block

Softmax over
Vocabulary

So long and thanks for

long and thanks forNext word all

…

Loss …

…

=

Linear Layer

Pretraining Data: mostly from the web (Common
Crawl)

The Pile:

Figure 1: Treemap of Pile components by effective size.

troduce a new filtered subset of Common Crawl,
Pile-CC, with improved extraction quality.

Through our analyses, we confirm that the Pile is
significantly distinct from pure Common Crawl
data. Additionally, our evaluations show that the
existing GPT-2 and GPT-3 models perform poorly
on many components of the Pile, and that models
trained on the Pile significantly outperform both
raw and filtered Common Crawl models. To com-
plement the performance evaluations, we also per-
form an exploratory analysis of the text within the
Pile to provide a detailed picture of the data. We
hope that our extensive documentation of the con-
struction and characteristics of the Pile will help
researchers make informed decisions about poten-
tial downstream applications.

Finally, we make publicly available the preprocess-
ing code for the constituent datasets of the Pile and
the code for constructing alternative versions2. In
the interest of reproducibility, we also document
all processing performed on each dataset (and the
Pile as a whole) in as much detail as possible. For
further details about the processing of each dataset,
see Section 2 and Appendix C.

2
https://github.com/EleutherAI/

the-pile

1.1 Contributions
The core contributions of this paper are:

1. The introduction of a 825.18 GiB english-
language dataset for language modeling com-
bining 22 diverse sources.

2. The introduction of 14 new language model-
ing datasets, which we expect to be of inde-
pendent interest to researchers.

3. Evaluations demonstrating significant im-
provements across many domains by GPT-2-
sized models trained on this new dataset, com-
pared to training on CC-100 and raw Common
Crawl.

4. The investigation and documentation of this
dataset, which we hope will better inform re-
searchers about how to use it as well as moti-
vate them to undertake similar investigations
of their own data.

2 The Pile Datasets

The Pile is composed of 22 constituent sub-datasets,
as shown in Table 1. Following Brown et al. (2020),
we increase the weights of higher quality compo-
nents, with certain high-quality datasets such as
Wikipedia being seen up to 3 times (“epochs”) for

2

What does a model learn from pretraining?

• There are canines everywhere! One dog in the
front room, and two dogs

• It wasn't just big it was enormous
• The author of "A Room of One's Own" is Virginia

Woolf
• The doctor told me that he
• The square root of 4 is 2

Big idea

Text contains enormous amounts of knowledge
Pretraining on lots of text with all that
knowledge is what gives language models their
ability to do so much

Large
Language
Models

Pretraining (and how to train
transformers for language
modeling)

Large
Language
Models

Large Language Models:
Applying pretrained models to
new tasks

Big idea

Many tasks can be turned into tasks of
predicting words!

Three architectures for large language models

Decoders Encoders Encoder-decoders
GPT, Claude, BERT family, Flan-T5, Whisper
Llama 2 HuBERT
Mixtral

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.
• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!
• How do we train them to build strong representations?

Encoder-
Decoders

• Good parts of decoders and encoders?
• What’s the best way to pretrain them?

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.
• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!
• How do we train them to build strong representations?

Encoder-
Decoders

• Good parts of decoders and encoders?
• What’s the best way to pretrain them?

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.
• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!
• How do we train them to build strong representations?

Encoder-
Decoders

• Good parts of decoders and encoders?
• What’s the best way to pretrain them?

Decoders

Also called:
• Causal LLMs
• Autoregressive LLMs
• Left-to-right LLMs

• Predict words left to right

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.
• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!
• How do we train them to build strong representations?

Encoder-
Decoders

• Good parts of decoders and encoders?
• What’s the best way to pretrain them?

Conditional Generation: Generating text
conditioned on previous text!

Prefix Text

Completion Text

Input
Embeddings

Transformer
Blocks

Sample from Softmax

So long

all

and thanks for all

the

the

…

linear layer

Framing lots of tasks as conditional generation

Sentiment analysis: “I like Jackie Chan”
1. We give the language model this string:

The sentiment of the sentence "I
like Jackie Chan" is:

2. And see what word it thinks comes next:

20 CHAPTER 10 • TRANSFORMERS AND LARGE LANGUAGE MODELS

Prefix Text

Completion Text

Input
Embeddings

Transformer
Blocks

Sample from Softmax

So long

all

and thanks for all

the

the

…

linear layer

Figure 10.15 Autoregressive text completion with transformer-based large language models.

word “negative” to see which is higher:

P(positive|The sentiment of the sentence “I like Jackie Chan” is:)
P(negative|The sentiment of the sentence “I like Jackie Chan” is:)

If the word “positive” is more probable, we say the sentiment of the sentence is
positive, otherwise we say the sentiment is negative.

We can also cast more complex tasks as word prediction. Consider the task
of answering simple questions, a task we return to in Chapter 14. In this task the
system is given some question and must give a textual answer. We can cast the task
of question answering as word prediction by giving a language model a question and
a token like A: suggesting that an answer should come next:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If we ask a language model to compute

P(w|Q: Who wrote the book “The Origin of Species”? A:)

and look at which words w have high probabilities, we might expect to see that
Charles is very likely, and then if we choose Charles and continue and ask

P(w|Q: Who wrote the book “The Origin of Species”? A: Charles)

we might now see that Darwin is the most probable word, and select it.
Conditional generation can even be used to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to take a longtext

summarization

text, such as a full-length article, and produce an effective shorter summary of it.
We can cast summarization as language modeling by giving a large language model
a text, and follow the text by a token like tl;dr; this token is short for something
like ‘too long; don’t read’ and in recent years people often use this token, especially
in informal work emails, when they are going to give a short summary. We can
then do conditional generation: give the language model this prefix, and then ask

Framing lots of tasks as conditional generation

QA: “Who wrote The Origin of Species”
1. We give the language model this string:

2. And see what word it thinks comes next:

20 CHAPTER 10 • TRANSFORMERS AND LARGE LANGUAGE MODELS

Prefix Text

Completion Text

Input
Embeddings

Transformer
Blocks

Sample from Softmax

So long

all

and thanks for all

the

the

…

linear layer

Figure 10.15 Autoregressive text completion with transformer-based large language models.

word “negative” to see which is higher:

P(positive|The sentiment of the sentence “I like Jackie Chan” is:)
P(negative|The sentiment of the sentence “I like Jackie Chan” is:)

If the word “positive” is more probable, we say the sentiment of the sentence is
positive, otherwise we say the sentiment is negative.

We can also cast more complex tasks as word prediction. Consider the task
of answering simple questions, a task we return to in Chapter 14. In this task the
system is given some question and must give a textual answer. We can cast the task
of question answering as word prediction by giving a language model a question and
a token like A: suggesting that an answer should come next:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If we ask a language model to compute

P(w|Q: Who wrote the book “The Origin of Species”? A:)

and look at which words w have high probabilities, we might expect to see that
Charles is very likely, and then if we choose Charles and continue and ask

P(w|Q: Who wrote the book “The Origin of Species”? A: Charles)

we might now see that Darwin is the most probable word, and select it.
Conditional generation can even be used to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to take a longtext

summarization

text, such as a full-length article, and produce an effective shorter summary of it.
We can cast summarization as language modeling by giving a large language model
a text, and follow the text by a token like tl;dr; this token is short for something
like ‘too long; don’t read’ and in recent years people often use this token, especially
in informal work emails, when they are going to give a short summary. We can
then do conditional generation: give the language model this prefix, and then ask

20 CHAPTER 10 • TRANSFORMERS AND LARGE LANGUAGE MODELS

Prefix Text

Completion Text

Input
Embeddings

Transformer
Blocks

Sample from Softmax

So long

all

and thanks for all

the

the

…

linear layer

Figure 10.15 Autoregressive text completion with transformer-based large language models.

word “negative” to see which is higher:

P(positive|The sentiment of the sentence “I like Jackie Chan” is:)
P(negative|The sentiment of the sentence “I like Jackie Chan” is:)

If the word “positive” is more probable, we say the sentiment of the sentence is
positive, otherwise we say the sentiment is negative.

We can also cast more complex tasks as word prediction. Consider the task
of answering simple questions, a task we return to in Chapter 14. In this task the
system is given some question and must give a textual answer. We can cast the task
of question answering as word prediction by giving a language model a question and
a token like A: suggesting that an answer should come next:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If we ask a language model to compute

P(w|Q: Who wrote the book “The Origin of Species”? A:)

and look at which words w have high probabilities, we might expect to see that
Charles is very likely, and then if we choose Charles and continue and ask

P(w|Q: Who wrote the book “The Origin of Species”? A: Charles)

we might now see that Darwin is the most probable word, and select it.
Conditional generation can even be used to accomplish tasks that must generate

longer responses. Consider the task of text summarization, which is to take a longtext

summarization

text, such as a full-length article, and produce an effective shorter summary of it.
We can cast summarization as language modeling by giving a large language model
a text, and follow the text by a token like tl;dr; this token is short for something
like ‘too long; don’t read’ and in recent years people often use this token, especially
in informal work emails, when they are going to give a short summary. We can
then do conditional generation: give the language model this prefix, and then ask

Encoders

Many varieties!
• Popular: Masked Language Models (MLMs)
• BERT family

• Trained by predicting words from surrounding
words on both sides

• Are usually fine-tuned (trained on supervised data)
for classification tasks.

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.
• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!
• How do we train them to build strong representations?

Encoder-
Decoders

• Good parts of decoders and encoders?
• What’s the best way to pretrain them?

Encoder-Decoders

• Trained to map from one sequence to another
• Very popular for:
• machine translation (map from one language to

another)
• speech recognition (map from acoustics to words)

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.
• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!
• How do we train them to build strong representations?

Encoder-
Decoders

• Good parts of decoders and encoders?
• What’s the best way to pretrain them?

Many more things I didn't talk about

Instruction Fine-tuning
Preference Alignment
Prompt Engineering

Where to learn these? CS224N!

Large
Language
Models

Large Language Models:
Applying pretrained models to
new tasks

Large
Language
Models

Harms of Large Language
Models

Hallucination

Current research direction to address hallucination

Retrieval-Augmented Generation (RAG)

Use information retrieval to retrieve some passages
from a high-quality source

Then use a language model to generate an answer
from those passages

Copyright

Privacy

Toxicity and Abuse

Misinformation

Vast growth in interest in Ethics of LLMs and AI

HAI: AI Index 2023

Large
Language
Models

Harms of Large Language
Models

Large
Language
Models

Our last class together!

Learning goals

Write regular expressions for text tasks
Apply the edit distance algorithm
Build a supervised classifier
Build a search engine
Work with neural word embeddings
Train a neural network
Build a recommendation engine
Build a chatbot
Prompt a large language model

What's next? Spring 2024 NLP adjacent courses
CS224N: Natural Language Processing with Deep Learning (Chris Manning)
Algorithmic internals: transformers, GPT, parsing, machine translation and other
applications. More of the gory details! More math, more machine learning
CS224C: NLP for Computational Social Science (Diyi Yang)
…machine learning and theories from social science to study human behaviors and
important societal questions at scale. NLP, social networks, causal inference, application
to social topics like hate speech, misinformation, and social movements.
CS 224S: Spoken Language Processing: (Andrew Maas)
Introduction to spoken language technology with an emphasis on dialogue and
conversational systems.
CS 336: Language Modeling from Scratch (Tatsu Hashimoto and Percy Liang)
every aspect of language model creation, including data collection and cleansing for pre-
training, transformer model construction, model training, and evaluation before
deployment. Application required.
CS 246: Mining Massive Data Sets (Jure Leskovec)

65

Next year courses!

CS 224V: Conversational Virtual Assistants with Deep Learning (Monica Lam)
Topics include: (1) growing LLMs' knowledge, (2) stopping LLMs from hallucination
(3) experimentation and evaluation of conversational assistants based on LLMs, (5)
controlling LLMs to achieve tasks, (6) persuasive LLMs, (7) multilingual assistants, and
(8) combining voice and graphical interfaces.
CS329X Human Centered NLP) (Diyi Yang)
human-centered design thinking in NLP, human-in-the-loop algorithms, fairness, and
accessibility.
CS329R Race and NLP (Dan Jurafsky and Jennifer Eberhardt)
Integrate methods from natural language processing with social psychological
perspectives on race to build practical systems that address significant societal issues

66

Fun courses outside of CS

Spring:
Linguist 173: Invented Languages
Linguist 134A: The Structure of Discourse
Linguist 156: Language, Gender, and Sexuality
COMM 154: The Politics of Algorithms

Next year:
Linguistics 150: Language and Society
Linguistics 130a: Introduction to semantics & pragmatics

67

