Transformers Introduction to Large Language
and Large

Language
Models

Models

Language models

* Remember the simple n-gram language model
* Assigns probabilities to sequences of words
* Generate text by sampling possible next words
* |strained on counts computed from lots of text

* Large language models are similar and different:
* Assigns probabilities to sequences of words
* Generate text by sampling possible next words
* Are trained by learning to guess the next word

Neural Large Language Models (LLMs)

* Self-supervised learners
* Take a text, remove a word
* Use your neural model to guess what the word was
* If the model is wrong, use stochastic gradient descent

to make the model guess better next time
* Advantages (?):
* All we need is a lot of text (GPT3: 500 billion tokens)
* (And a lot of compute)

LLMs are built out of transformers

Transformer: a specific kind of network architecture, like a
fancier feedforward network, but based on attention

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones™ Aidan N. Gomez* T F.ukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Ilia Polosukhin*
illia.polosukhin@gmail.com

A very approximate timeline

1990 Static Word Embeddings

2003 Neural Language Model

2008 Multi-Task Learning

2015 Attention

2017 Transformer

2018 Contextual Word Embeddings and Pretraining
2019 Prompting

A picture of a transformer language model

Output long and thanks for all

e (1) (D GO D (@

\

Linear Layer \T_ 7) =)\ —)

Layers of
Transformer
Blocks

Input
Embeddings

Transformers Introduction to Large Language
and Large

Language
Models

Models

Transformers Attention
and Large

Language
Models

Instead of starting with the big picture

Let's consider the embeddings for an individual word from a particular layer

Output long and thanks for all

e (1) (D GO D (@

Linear Layer N/ \ N =)\ —)

Layers of
Transformer
Blocks

Input

Embeddings

Problem with static embeddings (word2vec)

They are static! The embedding for a word doesn't reflect how its
meaning changes in context.

The chicken didn't cross the street because@as too tired

What is the meaning represented in the static embedding for "it"?

Contextual Embeddings

* Intuition: a representation of meaning of a word
should be different in different contexts!

* Contextual Embedding: each word has a different

vector that expresses different meanings
depending on the surrounding words

* How to compute contextual embeddings?
* Attention

Contextual Embeddings

The chicken didn't cross the street because 1t

What should be the properties of "it"?

The chicken didn't cross the street because 1t was too tired
The chicken didn't cross the street because 1t was too trafficy

At this point in the sentence, it's probably referring to either the chicken or the street

Intuition of attention

Build up the contextual embedding from a word by
selectively integrating information from all the

neighboring words

We say that a word "attends to" some neighboring
words more than others

Intuition of attention:

Pall}

001}

SemMm

asneoaq
19041S
oy}
SS0.40
1.Upip

lewiue

ay|

Layer 6

pail

00}

SeM

]
asneoaq
198.1S
au}

SSO0JO

LUpIp

ay|

LO
—
O
>
©

—

self-attention distribution

Attention definition

A mechanism for helping compute the embedding for
a token by selectively attending to and integrating

information from surrounding tokens (at the previous
layer).

More formally: a method for doing a weighted sum of
vectors.

'

Attention is left-to-right
Self-Attention
Layer A

Simplified version of attention: a sum of prior words
weighted by their similarity with the current word

Given a sequence of token embeddings:
X; X X3 X4 X5 X

Produce: a, = a weighted sum of x; through x:
Weighted by their similarity to x;

SCOI‘@(X,’, Xj) = Xj-Xj

®;; = softmax(score(x;,x;)) Vj<i

d;, — E OC,'J'XJ'

J<i

Intuition of attention:

Layer 6

because

The
animal
didn’t
Cross
the

self-attention distribution

)

2

Layer 5 I
g S g

— » QO

x]1 x2 x3 x4 x5 x6 x7

X1

was

was

too

too

tired

tired

Intuition of attention:

Layer 6

The
animal
didn’t

self-attention distribution

Layer 5

Cross

the

street

OU/LCVH

because

because

x]1 x2 x3 x4 x5 x6 x7 xi

values

was

was

too

too

tired

tired

Attention

Actually it's slightly more complicated, but | won't get into that

High-level idea: instead of just having a query and a set of values,
each embedding actually also has a key

Intuition of attention: query

Layer 6

The
animal
didn’t
Cross
the
because

self-attention distribution

(D)
(7))
Layer 5 I
()] ()] O
< = 0
— n O =
x] x2 x3 x4 x5 x6 x7 xi
K’,Cgs K K K K K K k

\/aLl/(,eS Vv Vv Vv Vv Vv Vv Vv

was

was

too

too

tired

tired

Summary

Attention is a method for enriching the representation of a token by
incorporating contextual information

The result: the embedding for each word will be different in different
contexts!

Contextual embeddings: a representation of word meaning in its
context.

Transformers Attention
and Large

Language
Models

Transformers The rest of the transformer
and Large

Language
Models

applied to language modeling

The transformer

Attention is just part of computing embeddings in a transformer.

Let's see more of the mechanism

Reminder: transformer language model

Output long and thanks for all

g (1) (D) D D G

A
Linear Layer N] A / N\ A / \ A /

Layers of
Transformer
Blocks

Input
Embeddings

The residual stream: each token gets passed up and
modified

hi_4 h; hi, 1

N

[Feedforward]

[Layer Norm |

/

11| (LayerNorm) .

Xi_q X Xit1

We'll need nonlinearities, so a feedforward layer

hi_4 h; hi, 1

&
S

[Feedforward]

[Layer Norm |

/

11| (LayerNorm) .

Xi_q X Xit1

Block 2

Block 1

Xi-1

A transformer is a stack of these blocks

h i h i+1
Feedforward

1| (LayerNorm}

i i+1
h; hi,q
A
Feedforward

Layer Norm

i l

Layer Norm+

INnputs

Transformer Block

X = Composite
Embeddings
(word + position)

Word o < S =
Embeddings |a@ = Q ®
Position
Embeddings |

Language modeling head

.. Word probabilities 1 x |V|

4 ' A

Language Model Head [] Softmax over vocabulary V

L
takes h N and outputs a u|V Logits 1x|V|
distribution over vocabulary V
Unembeddlng Unembedding layer dx |V|
layer =
/
(hI_1) { hI_2 -N 1xd
LayerL ,—~— B — b L.

Transformer |

N o -+ —n——#rn'’'b06oed"—b—v'odt'ohhb—"t4k"otyt4v“—tohtrhk"oh'"thbt"tthhbt”e"” Qo B
Block

Sample token to generate
at position N+1

The final transformer
m O d e | Langul?lg:dModel

W+

f

(h1 h2 hN)
g~ -—----------=-=-=-"- N
: (Layer Norm)
Layer L : [Feedforward] :
|
| Layer Norm)
- [Multihead Self-Attention]
\\ _________________ /'

(h1 h2 hN)
g~ - ------------="- N
: (Layer Norm I
Layer 2 : [Feedforward] :
|
: (Layer Norm)
- ((_Multihead Self-Attention]
\\ _________________ /'

(h1 h2 hN)
g~ -—----------=-=-=-"- N
: (Layer Norm)
Layer 1 : [Feedforward] :
|
| Layer Norm)
- [Multihead Self-Attention]
\\ _________________ /'

X (x1 x2 xN)

Add token + position embeddings (E[w1]Ew2] ...E[wN]) + (P1

Input tokens wiw2 ... wN

Transformers The rest of the transformer
and Large

Language
Models

applied to language modeling

Pretraining (and how to train

Large transformers for language

Language modeling)
Models

Pretraining

The big idea that underlies all the amazing
performance of language models

First pretrain a transformer model on enormous
amounts of text

Then apply it to new tasks.

Intuition of language model training

We just train them to predict the next word!
1. Take a corpus of text

2. At each time step t
I. ask the model to predict the next word

Il. train the model using gradient descent to minimize the
error in this prediction

Intuition of language model training: loss

* Same loss function: cross-entropy loss

* We want the model to assign a high probability to true
word w

* =want loss to be high if the model assigns too low a
probability to w

* CE Loss: The negative log probability that the model
assigns to the true next word w
* |f the model assigns too low a probability to w

* We move the model weights in the direction that assigns a
higher probability to w

Training a transtformer language model

Next word long and thanks for alll
Loss — 1oglylong — 104 Yand| |—log ylthanks — Og)l\ Yfor | [10% Yall
ammor (1 (0 D G G

Linear Layer

Transformer
Block

Input
Embeddings

and

thanks for

Pretraining Data: mostly from the web (Common

Bibliotik
Pile-CC PG-19 -

Crawl)

The Pile:

PubMed Central ArXiv

StackExchange
PMA Github
FreeLaw USPTO NIH |OpenWebText2 Wikipedia DM Math I

What does a model learn from pretraining?

* There are canines everywhere! One dog in the
front room, and two dogs

* |t wasn't just big it was enormous

* The author of "A Room of One's Own" is Virginia
Woolf

* The doctor told me that he
* The square root of 4 is 2

Big idea

Text contains enormous amounts of knowledge

Pretraining on lots of text with all that
knowledge is what gives language models their
ability to do so much

Pretraining (and how to train

Large transformers for language

Language modeling)
Models

Large Language Models:

Large Applying pretrained models to

Language new tasks
Models

Big idea

Many tasks can be turned into tasks of
predicting words!

Three architectures for large language models

Decoders Encoders Encoder-decoders
GPT, Claude, BERT family, Flan-T5, Whisper
Llama 2 HUuBERT

Mixtral

Decoders

Also called: :%:

* Causal LLMs
* Autoregressive LLMs
* Left-to-right LLMs

* Predict words left to right

Conditional Generation: Generating text
conditioned on previous text!

Completion Text

A
f -
al™” . the” }
! |
Sample from Softmax el : s)
A | A |
linear layer XTI/ | XL/ :
- ===
Transformer e ' — :
———— | ——
Blocks —F i 1 :
|
= |
' :
|
Input (3 (] (] @ o | (3 |
Embeddings & 8 8 S S | g ?]
i |
So long and thanks for ' _all : the
I./‘/Y \/7
-/

Y
Prefix Text

Framing lots of tasks as conditional generation

Sentiment analysis: “I like Jackie Chan”

1. We give the language model this string:

The

sentiment of the sentence "I

li1ke Jackie Chan" 1is:

2. And see what word it thinks comes next:

P(positive
P(negative

The sentiment of the sentence “I like Jackie Chan” is:)

The sentiment of the sentence “I like Jackie Chan” is:)

Framing lots of tasks as conditional generation

QA: “Who wrote The Origin of Species”
1. We give the language model this string:

Q: Who wrote the book ‘‘The Origin of Species"? A:

2. And see what word it thinks comes next:

P(w|Q: Who wrote the book “The Origin of Species”? A:)

Encoders

Many varieties!
* Popular: Masked Language Models (MLMs)

* BERT family

* Trained by predicting words from surrounding
words on both sides

* Are usually fine-tuned (trained on supervised data)
for classification tasks.

Encoder-Decoders

=

* Trained to map from one sequence to another

* Very popular for:

* machine translation (map from one language to
another)

* speech recognition (map from acoustics to words)

Many more things | didn't talk about

nstruction Fine-tuning

Preference Alignment

Prompt Engineering

Where to learn these? CS224N!

Large Language Models:

Large Applying pretrained models to

Language new tasks
Models

Harms of Large Language

Large Models
Language
Models

Hallucination Chatbots May ‘Hallucinate’
More Often Than Many Realize

What Can You Do When A.I Lies
About You?

People have little protection or recourse when the technology
creates and spreads falsehoods about them.

Air Canada loses court case after its chatbot hallucinated

fake policies to a customer
The airline argued that the chatbot itself was liable. The court disagreed.

Current research direction to address hallucination

Retrieval-Augmented Generation (RAG)

Use information retrieval to retrieve some passages
from a high-quality source

Then use a language model to generate an answer
from those passages

-
.

@

§

\\\\\\ \\\\\§ \\\\
\\\\\\\\\ s\\

il \\\\\\.,.\\\\.
§\§Qideu

i

t sa

the lawsui

)

it

Infringement of Hundreds of Thousands of Novels

Authors Sue OpenAl Claiming Mass Copyright

4+
-
Q0
K
>
O
@)
O

The Times Sues OpenAl and Microsoft
Over A.l. Use of Copyrighted Work

Millions of articles from The New York Times were used to train
th

chatbots that now compete

Privacy

How Strangers Got My
Address From ChatGP TFstModel

Toxicity and Abuse

The New Al-Powered Bing Is Threatening Users.

Cleaning Up ChatGPT Takes Heavy Toll on

Human Workers

Contractors in Kenya say they were traumatized by effort to screen out descriptions of
violence and sexual abuse during run-up to OpenAl’s hit chatbot

Misinformation

Chatbots are generating false and
misleading information about U.S.
elections

Vast growth in interest in Ethics of LLMs and Al

Number of Accepted FAccT Conference Submissions by Affiliation, 2018-22

Source: FAccT, 2022 | Chart: 2023 Al Index Report
800

Education 772
B Industry
700 Government
B Nonprofit
B Other
600
» 500
[0}
[oR
©
o
° 400
[0}
0
€
Z
300 302
244
200
166 181
100 7
ol I | | [— “_

2018 2019 2020 2021 2022
HAI: Al Index 2023

Harms of Large Language

Large Models
Language
Models

Our last class together!

Large
Language
Models

Learning goals

Write regular expressions for text tasks
Apply the edit distance algorithm

Build a supervised classifier

Build a search engine

Work with neural word embeddings
Train a neural network

Build a recommendation engine

Build a chatbot

Prompt a large language model

What's next? Spring 2024 NLP adjacent courses

CS224N: Natural Language Processing with Deep Learning (Chris Manning)

Algorithmic internals: transformers, GPT, parsing, machine translation and other
applications. More of the gory details! More math, more machine learning

CS224C: NLP for Computational Social Science (Diyi Yang)

...machine learning and theories from social science to study human behaviors and
important societal questions at scale. NLP, social networks, causal inference, application
to social topics like hate speech, misinformation, and social movements.

CS 224S: Spoken Language Processing: (Andrew Maas)

Introduction to spoken language technology with an emphasis on dialogue and
conversational systems.

CS 336: Language Modeling from Scratch (Tatsu Hashimoto and Percy Liang)

every aspect of language model creation, including data collection and cleansing for pre-
training, transformer model construction, model training, and evaluation before
deployment. Application required.

CS 246: Mining Massive Data Sets (Jure Leskovec)

Next year courses!

CS 224V: Conversational Virtual Assistants with Deep Learning (Monica Lam)

Topics include: (1) growing LLMs' knowledge, (2) stopping LLMs from hallucination
(3) experimentation and evaluation of conversational assistants based on LLMs, (5)
controlling LLMs to achieve tasks, (6) persuasive LLMs, (7) multilingual assistants, and
(8) combining voice and graphical interfaces.

CS329X Human Centered NLP) (Diyi Yang)

human-centered design thinking in NLP, human-in-the-loop algorithms, fairness, and
accessibility.

CS329R Race and NLP (Dan Jurafsky and Jennifer Eberhardt)

Integrate methods from natural language processing with social psychological
perspectives on race to build practical systems that address significant societal issues

Fun courses outside of CS

Spring:
Linguist 173: Invented Languages
Linguist 134A: The Structure of Discourse

Linguist 156: Language, Gender, and Sexuality
COMM 154: The Politics of Algorithms

Next year:
Linguistics 150: Language and Society

Linguistics 130a: Introduction to semantics & pragmatics

