
Introduction to N-grams

Language
Modeling

Dan Jurafsky

Probabilistic Language Models

• Today’s goal: assign a probability to a sentence
• Machine Translation:
• P(high winds tonite) > P(large winds tonite)

• Spell Correction
• The office is about fifteen minuets from my house

• P(about fifteen minutes from) > P(about fifteen minuets from)

• Speech Recognition
• P(I saw a van) >> P(eyes awe of an)

• + Summarization, question-answering, etc., etc.!!

Why?

Dan Jurafsky

Probabilistic Language Modeling

• Goal: compute the probability of a sentence or
sequence of words:

P(W) = P(w1,w2,w3,w4,w5…wn)

• Related task: probability of an upcoming word:
P(w5|w1,w2,w3,w4)

• A model that computes either of these:
P(W) or P(wn|w1,w2…wn-1) is called a language model.

• Better: the grammar But language model or LM is standard

Dan Jurafsky

How to compute P(W)

• How to compute this joint probability:

• P(its, water, is, so, transparent, that)

• Intuition: let’s rely on the Chain Rule of Probability

Dan Jurafsky

Reminder: The Chain Rule

• Recall the definition of conditional probabilities

p(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(B|A)

• More variables:
P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

• The Chain Rule in General
P(x1,x2,x3,…,xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)

Dan Jurafsky The Chain Rule applied to compute
joint probability of words in sentence

P(“its water is so transparent”) =
P(its) × P(water|its) × P(is|its water)
× P(so|its water is) × P(transparent|its water is

so)

€

P(w1w2…wn) = P(wi |w1w2…wi−1)
i
∏

Dan Jurafsky

How to estimate these probabilities

• Could we just count and divide?

• No! Too many possible sentences!
• We’ll never see enough data for estimating these

€

P(the | its water is so transparent that) =

Count(its water is so transparent that the)
Count(its water is so transparent that)

Dan Jurafsky

Markov Assumption

• Simplifying assumption:

• Or maybe

€

P(the | its water is so transparent that) ≈ P(the | that)

€

P(the | its water is so transparent that) ≈ P(the | transparent that)

Andrei Markov

Dan Jurafsky

Markov Assumption

• In other words, we approximate each
component in the product

€

P(w1w2…wn) ≈ P(wi |wi−k…wi−1)
i
∏

€

P(wi |w1w2…wi−1) ≈ P(wi |wi−k…wi−1)

Dan Jurafsky

Simplest case: Unigram model

fifth, an, of, futures, the, an, incorporated, a,
a, the, inflation, most, dollars, quarter, in, is,
mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Some automatically generated sentences from a unigram model

€

P(w1w2…wn) ≈ P(wi)
i
∏

Dan Jurafsky

Condition on the previous word:

Bigram model

texaco, rose, one, in, this, issue, is, pursuing, growth, in,
a, boiler, house, said, mr., gurria, mexico, 's, motion,
control, proposal, without, permission, from, five, hundred,
fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

€

P(wi |w1w2…wi−1) ≈ P(wi |wi−1)

Dan Jurafsky

N-gram models

• We can extend to trigrams, 4-grams, 5-grams
• In general this is an insufficient model of language

• because language has long-distance dependencies:

“The computer which I had just put into the machine room on
the fifth floor crashed.”

• But we can often get away with N-gram models

Introduction to N-grams

Language
Modeling

Estimating N-gram
Probabilities

Language
Modeling

Dan Jurafsky

Estimating bigram probabilities

• The Maximum Likelihood Estimate

€

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

Dan Jurafsky

An example

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

Dan Jurafsky

More examples:
Berkeley Restaurant Project sentences

• can you tell me about any good cantonese restaurants close by
• mid priced thai food is what i’m looking for
• tell me about chez panisse
• can you give me a listing of the kinds of food that are available
• i’m looking for a good place to eat breakfast
• when is caffe venezia open during the day

Dan Jurafsky

Raw bigram counts

• Out of 9222 sentences

Dan Jurafsky

Raw bigram probabilities

• Normalize by unigrams:

• Result:

Dan Jurafsky

Bigram estimates of sentence probabilities

P(<s> I want english food </s>) =
P(I|<s>)
× P(want|I)
× P(english|want)
× P(food|english)
× P(</s>|food)

= .000031

Dan Jurafsky

What kinds of knowledge?

• P(english|want) = .0011
• P(chinese|want) = .0065
• P(to|want) = .66
• P(eat | to) = .28
• P(food | to) = 0
• P(want | spend) = 0
• P (i | <s>) = .25

Dan Jurafsky

Practical Issues

• We do everything in log space
• Avoid underflow
• (also adding is faster than multiplying)

log(p1 × p2 × p3 × p4) = log p1 + log p2 + log p3 + log p4

Dan Jurafsky

Language Modeling Toolkits

• SRILM
• http://www.speech.sri.com/projects/srilm/

• KenLM
• https://kheafield.com/code/kenlm/

http://www.speech.sri.com/projects/srilm/
https://kheafield.com/code/kenlm/

Dan Jurafsky

Google N-Gram Release, August 2006

…

Dan Jurafsky

Google N-Gram Release
• serve as the incoming 92
• serve as the incubator 99
• serve as the independent 794
• serve as the index 223
• serve as the indication 72
• serve as the indicator 120
• serve as the indicators 45
• serve as the indispensable 111
• serve as the indispensible 40
• serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Dan Jurafsky

Google Book N-grams

• http://ngrams.googlelabs.com/

http://ngrams.googlelabs.com/

Estimating N-gram
Probabilities

Language
Modeling

Evaluation and
Perplexity

Language
Modeling

Dan Jurafsky

Evaluation: How good is our model?

• Does our language model prefer good sentences to bad ones?
• Assign higher probability to “real” or “frequently observed” sentences
• Than “ungrammatical” or “rarely observed” sentences?

• We train parameters of our model on a training set.
• We test the model’s performance on data we haven’t seen.

• A test set is an unseen dataset that is different from our training set,
totally unused.

• An evaluation metric tells us how well our model does on the test set.

Dan Jurafsky

(Extra Slide not in video)
Training on the test set

• We can’t allow test sentences into the training set
• We will assign it an artificially high probability when we set it in

the test set
• “Training on the test set”
• Bad science!
• And violates the honor code

30

Dan Jurafsky

Extrinsic evaluation of N-gram models

• Best evaluation for comparing models A and B
• Put each model in a task
• spelling corrector, speech recognizer, MT system

• Run the task, get an accuracy for A and for B
• How many misspelled words corrected properly
• How many words translated correctly

• Compare accuracy for A and B

Dan Jurafsky

Difficulty of extrinsic (in-vivo) evaluation
of N-gram models

• Extrinsic evaluation
• Time-consuming; can take days or weeks

• So
• Sometimes use intrinsic evaluation: perplexity
• Bad approximation
• unless the test data looks just like the training data
• So generally only useful in pilot experiments

• But is helpful to think about.

Dan Jurafsky

Intuition of Perplexity

• The Shannon Game:
• How well can we predict the next word?

• Unigrams are terrible at this game. (Why?)
• A better model of a text

• is one which assigns a higher probability to the word that actually occurs

I always order pizza with cheese and ____

The 33rd President of the US was ____

I saw a ____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100

Dan Jurafsky

Perplexity

Perplexity is the inverse probability of
the test set, normalized by the number
of words:

Chain rule:

For bigrams:

Minimizing perplexity is the same as maximizing probability

The best language model is one that best predicts an unseen test set
• Gives the highest P(sentence)

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

Dan Jurafsky

The Shannon Game intuition for perplexity

• From Josh Goodman
• How hard is the task of recognizing digits ‘0,1,2,3,4,5,6,7,8,9’

• Perplexity 10

• How hard is recognizing (30,000) names at Microsoft.
• Perplexity = 30,000

• If a system has to recognize
• Operator (1 in 4)
• Sales (1 in 4)
• Technical Support (1 in 4)
• 30,000 names (1 in 120,000 each)
• Perplexity is 52.6

• Perplexity is weighted equivalent branching factor

The Shannon Game intuition for perplexity
A call-routing phone system gets 120K calls and has to recognize

◦ "Operator" (let's say this occurs 1 in 4 calls)
◦ "Sales" (1 in 4)
◦ "Technical Support" (1 in 4)
◦ 30,000 different names (each name occurring 1 time in the 120K calls)

To get the perplexity of this sequence of length 120K:
1) multiply 120K probabilities (90K of which are 1/4 and 30K

of which are 1/120K)
2) take the inverse 120,000th root:

Perp = (¼ * ¼ * ¼* ¼ * ¼ * …. * 1/120K * 1/120K * ….)^(-1/120K)
Can be arithmetically simplified to just N = 4: operator (1/4),
sales (1/4), tech support (1/4), and 30,000 names (1/120,000):
Perplexity= (¼ * ¼ * ¼ * 1/120K)^(-1/4) = 52.6

Dan Jurafsky

Perplexity as branching factor

• Let’s suppose a sentence consisting of random digits
• What is the perplexity of this sentence according to a model

that assign P=1/10 to each digit?

Dan Jurafsky

Lower perplexity = better model

• Training 38 million words, test 1.5 million words, WSJ

N-gram
Order

Unigram Bigram Trigram

Perplexity 962 170 109

Evaluation and
Perplexity

Language
Modeling

Generalization and
zeros

Language
Modeling

Dan Jurafsky

The Shannon Visualization Method

• Choose a random bigram
(<s>, w) according to its probability

• Now choose a random bigram
(w, x) according to its probability

• And so on until we choose </s>
• Then string the words together

<s> I
I want
want to

to eat
eat Chinese

Chinese food
food </s>

I want to eat Chinese food

Dan Jurafsky

Approximating Shakespeare

10 CHAPTER 4 • N-GRAMS

Imagine all the words of English covering the probability space between 0 and 1,
each word covering an interval proportional to its frequency. We choose a random
value between 0 and 1 and print the word whose interval includes this chosen value.
We continue choosing random numbers and generating words until we randomly
generate the sentence-final token </s>. We can use the same technique to generate
bigrams by first generating a random bigram that starts with <s> (according to its
bigram probability), then choosing a random bigram to follow (again, according to
its bigram probability), and so on.

To give an intuition for the increasing power of higher-order N-grams, Fig. 4.3
shows random sentences generated from unigram, bigram, trigram, and 4-gram
models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 4.3 Eight sentences randomly generated from four N-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words or any
sentence-final punctuation. The bigram sentences have some local word-to-word
coherence (especially if we consider that punctuation counts as a word). The tri-
gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a
careful investigation of the 4-gram sentences shows that they look a little too much
like Shakespeare. The words It cannot be but so are directly from King John. This
is because, not to put the knock on Shakespeare, his oeuvre is not very large as
corpora go (N = 884,647,V = 29,066), and our N-gram probability matrices are
ridiculously sparse. There are V 2 = 844,000,000 possible bigrams alone, and the
number of possible 4-grams is V 4 = 7⇥1017. Thus, once the generator has chosen
the first 4-gram (It cannot be but), there are only five possible continuations (that, I,
he, thou, and so); indeed, for many 4-grams, there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at an
N-gram grammar trained on a completely different corpus: the Wall Street Journal
(WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between our N-grams for the two genres. Fig. 4.4
shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

Compare these examples to the pseudo-Shakespeare in Fig. 4.3. While superfi-
cially they both seem to model “English-like sentences”, there is obviously no over-

Dan Jurafsky

Shakespeare as corpus

• N=884,647 tokens, V=29,066
• Shakespeare produced 300,000 bigram types

out of V2= 844 million possible bigrams.
• So 99.96% of the possible bigrams were never seen

(have zero entries in the table)
• Quadrigrams worse: What's coming out looks

like Shakespeare because it is Shakespeare

Dan Jurafsky

The wall street journal is not shakespeare
(no offense)

4.3 • GENERALIZATION AND ZEROS 11

1 Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

gram

2
Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners one

gram point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

3
They also point to ninety nine point six billion dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and

gram Brazil on market conditions
Figure 4.4 Three sentences randomly generated from three N-gram models computed from
40 million words of the Wall Street Journal, lower-casing all characters and treating punctua-
tion as words. Output was then hand-corrected for capitalization to improve readability.

lap whatsoever in possible sentences, and little if any overlap even in small phrases.
This stark difference tells us that statistical models are likely to be pretty useless as
predictors if the training sets and the test sets are as different as Shakespeare and
WSJ.

How should we deal with this problem when we build N-gram models? One way
is to be sure to use a training corpus that has a similar genre to whatever task we are
trying to accomplish. To build a language model for translating legal documents,
we need a training corpus of legal documents. To build a language model for a
question-answering system, we need a training corpus of questions.

Matching genres is still not sufficient. Our models may still be subject to the
problem of sparsity. For any N-gram that occurred a sufficient number of times,
we might have a good estimate of its probability. But because any corpus is limited,
some perfectly acceptable English word sequences are bound to be missing from it.
That is, we’ll have a many cases of putative “zero probability N-grams” that should
really have some non-zero probability. Consider the words that follow the bigram
denied the in the WSJ Treebank3 corpus, together with their counts:

denied the allegations: 5
denied the speculation: 2
denied the rumors: 1
denied the report: 1

But suppose our test set has phrases like:

denied the offer
denied the loan

Our model will incorrectly estimate that the P(offer|denied the) is 0!
These zeros— things things that don’t ever occur in the training set but do occurzeros

in the test set—are a problem for two reasons. First, they means we are underes-
timating the probability of all sorts of words that might occur, which will hurt the
performance of any application we want to run on this data.

Second, if the probability of any word in the testset is 0, the entire probability of
the test set is 0. But the definition of perplexity is based on the inverse probability
of the test set. If some words have zero probability, we can’t compute perplexity at
all, since we can’t divide by 0!

Dan Jurafsky

Can you guess the author of these random
3-gram sentences?

• They also point to ninety nine point six billion dollars from two
hundred four oh six three percent of the rates of interest stores
as Mexico and gram Brazil on market conditions

• This shall forbid it should be branded, if renown made it empty.
• “You are uniformly charming!” cried he, with a smile of

associating and now and then I bowed and they perceived a
chaise and four to wish for.

45

Dan Jurafsky

The perils of overfitting

• N-grams only work well for word prediction if the test
corpus looks like the training corpus
• In real life, it often doesn’t
• We need to train robust models that generalize!
• One kind of generalization: Zeros!
• Things that don’t ever occur in the training set
• But occur in the test set

Dan Jurafsky

Zeros
• Training set:

… denied the allegations
… denied the reports
… denied the claims
… denied the request

P(“offer” | denied the) = 0

• Test set
… denied the offer
… denied the loan

Dan Jurafsky

Zero probability bigrams

• Bigrams with zero probability
• mean that we will assign 0 probability to the test set!

• And hence we cannot compute perplexity (can’t divide by 0)!

Generalization and
zeros

Language
Modeling

Smoothing: Add-one
(Laplace) smoothing

Language
Modeling

Dan Jurafsky

The intuition of smoothing (from Dan Klein)

• When we have sparse statistics:

• Steal probability mass to generalize better

P(w | denied the)
3 allegations
2 reports
1 claims
1 request
7 total

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

al
le
g
at
io
n
s

re
p
o
rt
s

cl
ai
m
s

at
ta

ck

re
q
u
es
t

m
an

ou
tc

om
e

…

al
le
g
at
io
n
s

at
ta

ck

m
an

ou
tc

om
e

…al
le
g
at
io
n
s

re
p
o
rt
s

cl
ai
m
s

re
q
u
es
t

Dan Jurafsky

Add-one estimation

• Also called Laplace smoothing
• Pretend we saw each word one more time than we did
• Just add one to all the counts!

• MLE estimate:

• Add-1 estimate:

PMLE (wi |wi−1) =
c(wi−1,wi)
c(wi−1)

PAdd−1(wi |wi−1) =
c(wi−1,wi)+1
c(wi−1)+V

Dan Jurafsky

Maximum Likelihood Estimates
• The maximum likelihood estimate

• of some parameter of a model M from a training set T
• maximizes the likelihood of the training set T given the model M

• Suppose the word “bagel” occurs 400 times in a corpus of a million words
• What is the probability that a random word from some other text will be

“bagel”?
• MLE estimate is 400/1,000,000 = .0004
• This may be a bad estimate for some other corpus

• But it is the estimate that makes it most likely that “bagel” will occur 400 times in
a million word corpus.

Dan Jurafsky

Berkeley Restaurant Corpus: Laplace
smoothed bigram counts

Dan Jurafsky

Laplace-smoothed bigrams

Dan Jurafsky

Reconstituted counts

Dan Jurafsky

Compare with raw bigram counts

Dan Jurafsky

Add-1 estimation is a blunt instrument

• So add-1 isn’t used for N-grams:
• We’ll see better methods

• But add-1 is used to smooth other NLP models
• For text classification
• In domains where the number of zeros isn’t so huge.

Smoothing: Add-one
(Laplace) smoothing

Language
Modeling

Interpolation, Backoff,
and Web-Scale LMs

Language
Modeling

Dan Jurafsky

Backoff and Interpolation
• Sometimes it helps to use less context

• Condition on less context for contexts you haven’t learned much about

• Backoff:
• use trigram if you have good evidence,
• otherwise bigram, otherwise unigram

• Interpolation:
• mix unigram, bigram, trigram

• Interpolation works better

Dan Jurafsky

Linear Interpolation

• Simple interpolation

• Lambdas conditional on context:

4.4 • SMOOTHING 15

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing

One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation

The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in

4.4 • SMOOTHING 15

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing

One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation

The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in

Dan Jurafsky

How to set the lambdas?
• Use a held-out corpus

• Choose λs to maximize the probability of held-out data:
• Fix the N-gram probabilities (on the training data)
• Then search for λs that give largest probability to held-out set:

Training Data Held-Out
Data

Test
Data

logP(w1...wn |M (λ1...λk)) = logPM (λ1...λk) (wi |wi−1)
i
∑

Dan Jurafsky

Unknown words: Open versus closed
vocabulary tasks

• If we know all the words in advanced
• Vocabulary V is fixed
• Closed vocabulary task

• Often we don’t know this
• Out Of Vocabulary = OOV words
• Open vocabulary task

• Instead: create an unknown word token <UNK>
• Training of <UNK> probabilities

• Create a fixed lexicon L of size V
• At text normalization phase, any training word not in L changed to <UNK>
• Now we train its probabilities like a normal word

• At decoding time
• If text input: Use UNK probabilities for any word not in training

Dan Jurafsky

Huge web-scale n-grams
• How to deal with, e.g., Google N-gram corpus
• Pruning

• Only store N-grams with count > threshold.
• Remove singletons of higher-order n-grams

• Entropy-based pruning
• Efficiency

• Efficient data structures like tries
• Bloom filters: approximate language models
• Store words as indexes, not strings
• Use Huffman coding to fit large numbers of words into two bytes

• Quantize probabilities (4-8 bits instead of 8-byte float)

Dan Jurafsky

Smoothing for Web-scale N-grams

• “Stupid backoff” (Brants et al. 2007)
• No discounting, just use relative frequencies

66

S(wi |wi−k+1
i−1) =

count(wi−k+1
i)

count(wi−k+1
i−1)

 if count(wi−k+1
i)> 0

0.4S(wi |wi−k+2
i−1) otherwise

"

#
$$

%
$
$

S(wi) =
count(wi)

N

Dan Jurafsky

N-gram Smoothing Summary

• Add-1 smoothing:
• OK for text categorization, not for language modeling

• The most commonly used method:
• Extended Interpolated Kneser-Ney

• For very large N-grams like the Web:
• Stupid backoff

67

Dan Jurafsky

Advanced Language Modeling
• Discriminative models:

• choose n-gram weights to improve a task, not to fit the
training set

• Parsing-based models
• Caching Models

• Recently used words are more likely to appear

• These perform very poorly for speech recognition (why?)

PCACHE (w | history) = λP(wi |wi−2wi−1)+ (1−λ)
c(w ∈ history)
| history |

Interpolation, Backoff,
and Web-Scale LMs

Language
Modeling

