What is Sentiment Analysis?
Positive or negative movie review?

- unbelievably disappointing
- Full of zany characters and richly applied satire, and some great plot twists
- this is the greatest screwball comedy ever filmed
- It was pathetic. The worst part about it was the boxing scenes.
Google Product Search

HP Officejet 6500A Plus e-All-in-One Color Ink-jet - Fax / copier / printer / scanner
$89 online, $100 nearby ★★★★★ 377 reviews
September 2010 - Printer - HP - Inkjet - Office - Copier - Color - Scanner - Fax - 250 sheets

Reviews

Summary - Based on 377 reviews

What people are saying

<table>
<thead>
<tr>
<th>Ease of use</th>
<th>★★★★★</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>★★★★</td>
</tr>
<tr>
<td>Setup</td>
<td>★★★</td>
</tr>
<tr>
<td>Customer service</td>
<td>★★</td>
</tr>
<tr>
<td>Size</td>
<td>★★★★★</td>
</tr>
<tr>
<td>Mode</td>
<td>★★★★★</td>
</tr>
<tr>
<td>Colors</td>
<td>★★★★★</td>
</tr>
</tbody>
</table>
Bing Shopping

HP Officejet 6500A E710N Multifunction Printer

Product summary Find best price Customer reviews Specifications Related items

$121.53 - $242.39 (14 stores)

Compare

Average rating ★★★★★ (144) Most mentioned
★ ★ ★ ★ ★ (55) Performance (57)
★ ★ ★ ★ ★ (54) Ease of Use (43)
★ ★ ★ ★ ★ (10) Print Speed (39)
★ ★ ★ ★ ★ (6) Connectivity (31)
★ ★ ★ ★ ★ (23) More ▼

Show reviews by source
Best Buy (140)
CNET (5)
Amazon.com (3)
Twitter sentiment versus Gallup Poll of Consumer Confidence

Twitter sentiment:

Bollen et al. (2011)

- CALM predicts DJIA 3 days later
- At least one current hedge fund uses this algorithm
Target Sentiment on Twitter

- **Twitter Sentiment App**
- Alec Go, Richa Bhayani, Lei Huang. 2009. Twitter Sentiment Classification using Distant Supervision
Sentiment analysis has many other names

- Opinion extraction
- Opinion mining
- Sentiment mining
- Subjectivity analysis
Why sentiment analysis?

- **Movie**: is this review positive or negative?
- **Products**: what do people think about the new iPhone?
- **Public sentiment**: how is consumer confidence? Is despair increasing?
- **Politics**: what do people think about this candidate or issue?
- **Prediction**: predict election outcomes or market trends from sentiment
Scherer Typology of Affective States

- **Emotion**: brief organically synchronized ... evaluation of a major event
 - angry, sad, joyful, fearful, ashamed, proud, elated

- **Mood**: diffuse non-caused low-intensity long-duration change in subjective feeling
 - cheerful, gloomy, irritable, listless, depressed, buoyant

- **Interpersonal stances**: affective stance toward another person in a specific interaction
 - friendly, flirtatious, distant, cold, warm, supportive, contemptuous

- **Attitudes**: enduring, affectively colored beliefs, dispositions towards objects or persons
 - liking, loving, hating, valuing, desiring

- **Personality traits**: stable personality dispositions and typical behavior tendencies
 - nervous, anxious, reckless, morose, hostile, jealous
Scherer Typology of Affective States

- **Emotion**: brief organically synchronized ... evaluation of a major event
 - angry, sad, joyful, fearful, ashamed, proud, elated

- **Mood**: diffuse non-caused low-intensity long-duration change in subjective feeling
 - cheerful, gloomy, irritable, listless, depressed, buoyant

- **Interpersonal stances**: affective stance toward another person in a specific interaction
 - friendly, flirtatious, distant, cold, warm, supportive, contemptuous

- **Attitudes**: enduring, affectively colored beliefs, dispositions towards objects or persons
 - liking, loving, hating, valuing, desiring

- **Personality traits**: stable personality dispositions and typical behavior tendencies
 - nervous, anxious, reckless, morose, hostile, jealous
Sentiment Analysis

- Sentiment analysis is the detection of **attitudes**

 “enduring, affectively colored beliefs, dispositions towards objects or persons”

1. **Holder (source)** of attitude
2. **Target (aspect)** of attitude
3. **Type** of attitude
 - From a set of types
 - *Like, love, hate, value, desire*, etc.
 - Or (more commonly) simple weighted **polarity**:
 - *positive, negative, neutral*, together with *strength*
4. **Text** containing the attitude
 - Sentence or entire document
Sentiment Analysis

• Simplest task:
 • Is the attitude of this text positive or negative?

• More complex:
 • Rank the attitude of this text from 1 to 5

• Advanced:
 • Detect the target, source, or complex attitude types
Sentiment Analysis

• Simplest task:
 • Is the attitude of this text positive or negative?

• More complex:
 • Rank the attitude of this text from 1 to 5

• Advanced:
 • Detect the target, source, or complex attitude types
Sentiment Analysis

What is Sentiment Analysis?
Sentiment Analysis

A Baseline Algorithm
Sentiment Classification in Movie Reviews

• Polarity detection:
 • Is an IMDB movie review positive or negative?

• Data: Polarity Data 2.0:
 • http://www.cs.cornell.edu/people/pabo/movie-review-data
when _star wars_ came out some twenty years ago, the image of traveling throughout the stars has become a commonplace image. [...] when han solo goes light speed, the stars change to bright lines, going towards the viewer in lines that converge at an invisible point. cool.

october sky offers a much simpler image—that of a single white dot, traveling horizontally across the night sky. [...]

“snake eyes” is the most aggravating kind of movie: the kind that shows so much potential then becomes unbelievably disappointing.

it’s not just because this is a brian depalma film, and since he’s a great director and one who’s films are always greeted with at least some fanfare. and it’s not even because this was a film starring nicolas cage and since he gives a brauvara performance, this film is hardly worth his talents.
Baseline Algorithm (adapted from Pang and Lee)

- Tokenization
- Feature Extraction
- Classification using different classifiers
 - Naïve Bayes
 - MaxEnt
 - SVM
Sentiment Tokenization Issues

• Deal with HTML and XML markup
• Twitter mark-up (names, hash tags)
• Capitalization (preserve for words in all caps)
• Phone numbers, dates
• Emoticons
• Useful code:

 • Christopher Potts sentiment tokenizer
 • Brendan O’Connor twitter tokenizer
Extracting Features for Sentiment Classification

- How to handle negation
 - I didn’t like this movie
 vs
 - I really like this movie

- Which words to use?
 - Only adjectives
 - All words
 - All words turns out to work better, at least on this data
Add NOT_ to every word between negation and following punctuation:

didn’t NOT_like NOT_this NOT_movie but I
Reminder: Naïve Bayes

\[
c_{NB} = \arg\max_{c_j \in C} P(c_j) \prod_{i \in \text{positions}} P(w_i \mid c_j)
\]

\[
\hat{P}(w \mid c) = \frac{\text{count}(w, c) + 1}{\text{count}(c) + |V|}
\]
Binarized (Boolean feature) Multinomial Naïve Bayes

• Intuition:
 • For sentiment (and probably for other text classification domains)
 • Word occurrence may matter more than word frequency
 • The occurrence of the word *fantastic* tells us a lot
 • The fact that it occurs 5 times may not tell us much more.
 • Boolean Multinomial Naïve Bayes
 • Clips all the word counts in each document at 1
Boolean Multinomial Naïve Bayes: Learning

- From training corpus, extract *Vocabulary*

- Calculate $P(c_j)$ terms
 - For each c_j in C
 $$docs_j \leftarrow \text{all docs with class } = c_j$$
 $$P(c_j) \leftarrow \frac{|docs_j|}{\text{total # documents}}$$

- Calculate $P(w_k | c_j)$ terms
 - Remove single docs containing all $docs_j$
 - For each word type w_k in vocabulary
 $$n_k \leftarrow \text{# of occurrences of } w_k \text{ in } Text_j$$
 $$P(w_k | c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha \cdot |\text{Vocabulary}|}$$
Boolean Multinomial Naïve Bayes on a test document d

- First remove all duplicate words from d
- Then compute NB using the same equation:

$$c_{NB} = \arg \max_{c_j \in C} P(c_j) \prod_{i \in \text{positions}} P(w_i | c_j)$$
Normal vs. Boolean Multinomial NB

<table>
<thead>
<tr>
<th>Normal</th>
<th>Doc</th>
<th>Words</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>1</td>
<td>Chinese Beijing Chinese</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Chinese Chinese Shanghai</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Chinese Macao</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Tokyo Japan Chinese</td>
<td>j</td>
</tr>
<tr>
<td>Test</td>
<td>5</td>
<td>Chinese Chinese Chinese Tokyo Japan</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boolean</th>
<th>Doc</th>
<th>Words</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>1</td>
<td>Chinese Beijing</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Chinese Shanghai</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Chinese Macao</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Tokyo Japan Chinese</td>
<td>j</td>
</tr>
<tr>
<td>Test</td>
<td>5</td>
<td>Chinese Tokyo Japan</td>
<td>?</td>
</tr>
</tbody>
</table>
Binarized (Boolean feature) Multinomial Naïve Bayes

• Binary seems to work better than full word counts
 • This is not the same as Multivariate Bernoulli Naïve Bayes
 • MBNB doesn’t work well for sentiment or other text tasks

• Other possibility: \[\log(\text{freq}(w))\]
Cross-Validation

• Break up data into 10 folds
 • (Equal positive and negative inside each fold?)

• For each fold
 • Choose the fold as a temporary test set
 • Train on 9 folds, compute performance on the test fold

• Report average performance of the 10 runs
Other issues in Classification

- MaxEnt and SVM tend to do better than Naïve Bayes
Problems: What makes reviews hard to classify?

• Subtlety:
 • Perfume review in *Perfumes: the Guide*:
 • “If you are reading this because it is your darling fragrance, please wear it at home exclusively, and tape the windows shut.”
 • Dorothy Parker on Katherine Hepburn
 • “She runs the gamut of emotions from A to B”
Thwarted Expectations and Ordering Effects

• “This film should be brilliant. It sounds like a great plot, the actors are first grade, and the supporting cast is good as well, and Stallone is attempting to deliver a good performance. However, it can’t hold up.”

• Well as usual Keanu Reeves is nothing special, but surprisingly, the very talented Laurence Fishbourne is not so good either, I was surprised.
Sentiment Analysis

A Baseline Algorithm
Sentiment Analysis

Sentiment Lexicons
The General Inquirer

- Home page: http://www.wjh.harvard.edu/~inquirer
- List of Categories: http://www.wjh.harvard.edu/~inquirer/homecat.htm
- Spreadsheet: http://www.wjh.harvard.edu/~inquirer/inquirerbasic.xls
- Categories:
 - Positiv (1915 words) and Negativ (2291 words)
 - Strong vs Weak, Active vs Passive, Overstated versus Understated
 - Pleasure, Pain, Virtue, Vice, Motivation, Cognitive Orientation, etc
- Free for Research Use
LIWC (Linguistic Inquiry and Word Count)

- 2300 words, >70 classes
- **Affective Processes**
 - negative emotion (*bad, weird, hate, problem, tough*)
 - positive emotion (*love, nice, sweet*)
- **Cognitive Processes**
 - Tentative (*maybe, perhaps, guess*), Inhibition (*block, constraint*)
- **Pronouns, Negation** (*no, never*), **Quantifiers** (*few, many*)
- $30 or $90 fee
MPQA Subjectivity Cues Lexicon

• Home page: http://www.cs.pitt.edu/mpqa/subj_lexicon.html

• 6885 words from 8221 lemmas
 • 2718 positive
 • 4912 negative

• Each word annotated for intensity (strong, weak)

• GNU GPL
Bing Liu Opinion Lexicon

• Bing Liu's Page on Opinion Mining
 http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar

• 6786 words
 • 2006 positive
 • 4783 negative
SentiWordNet

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. 2010 SENTIWORDNET 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. LREC-2010

- Home page: http://sentiwordnet.isti.cnr.it/
- All WordNet synsets automatically annotated for degrees of positivity, negativity, and neutrality/objectiveness
- \[\text{estimable}(J,3)\] “may be computed or estimated”
 - Pos 0 Neg 0 Obj 1
- \[\text{estimable}(J,1)\] “deserving of respect or high regard”
 - Pos .75 Neg 0 Obj .25
Disagreements between polarity lexicons

Christopher Potts, [Sentiment Tutorial](#), 2011

<table>
<thead>
<tr>
<th></th>
<th>Opinion Lexicon</th>
<th>General Inquirer</th>
<th>SentiWordNet</th>
<th>LIWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPQA</td>
<td>33/5402 (0.6%)</td>
<td>49/2867 (2%)</td>
<td>1127/4214 (27%)</td>
<td>12/363 (3%)</td>
</tr>
<tr>
<td>Opinion Lexicon</td>
<td>32/2411 (1%)</td>
<td></td>
<td>1004/3994 (25%)</td>
<td>9/403 (2%)</td>
</tr>
<tr>
<td>General Inquirer</td>
<td></td>
<td>520/2306 (23%)</td>
<td></td>
<td>1/204 (0.5%)</td>
</tr>
<tr>
<td>SentiWordNet</td>
<td></td>
<td></td>
<td></td>
<td>174/694 (25%)</td>
</tr>
<tr>
<td>LIWC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analyzing the polarity of each word in IMDB

• How likely is each word to appear in each sentiment class?
• Count(“bad”) in 1-star, 2-star, 3-star, etc.
• But can’t use raw counts:
 • Instead, likelihood: $P(w \mid c) = \frac{f(w, c)}{\sum_{w \in c} f(w, c)}$
• Make them comparable between words
 • Scaled likelihood: $P(w \mid c) = \frac{P(w \mid c)}{P(w)}$
Analyzing the polarity of each word in IMDB

POS good (883,417 tokens)

amazing (103,509 tokens)

great (648,110 tokens)

awesome (47,142 tokens)

NEG good (20,447 tokens)

depress(ed/ing) (18,498 tokens)

bad (368,273 tokens)

terrible (55,492 tokens)
Other sentiment feature: Logical negation

- Is logical negation (*no, not*) associated with negative sentiment?
- Potts experiment:
 - Count negation (*not, n’t, no, never*) in online reviews
 - Regress against the review rating
Potts 2011 Results:
More negation in negative sentiment

IMDB (4,073,228 tokens)

Five-star reviews (846,444 tokens)
Sentiment Analysis

Other Sentiment Tasks
Finding sentiment of a sentence

• Important for finding aspects or attributes
 • Target of sentiment

• The food was great but the service was awful
Finding aspect/attribute/target of sentiment

- Frequent phrases + rules
 - Find all highly frequent phrases across reviews (“fish tacos”)
 - Filter by rules like “occurs right after sentiment word”
 - “…great fish tacos” means fish tacos a likely aspect

<table>
<thead>
<tr>
<th>Casino</th>
<th>casino, buffet, pool, resort, beds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children’s Barber</td>
<td>haircut, job, experience, kids</td>
</tr>
<tr>
<td>Greek Restaurant</td>
<td>food, wine, service, appetizer, lamb</td>
</tr>
<tr>
<td>Department Store</td>
<td>selection, department, sales, shop, clothing</td>
</tr>
</tbody>
</table>
Finding aspect/attribute/target of sentiment

• The aspect name may not be in the sentence
• For restaurants/hotels, aspects are well-understood
• Supervised classification
 • Hand-label a small corpus of restaurant review sentences with aspect
 • food, décor, service, value, NONE
 • Train a classifier to assign an aspect to a sentence
 • “Given this sentence, is the aspect food, décor, service, value, or NONE”
Putting it all together: Finding sentiment for aspects

Results of Blair-Goldensohn et al. method

Rooms (3/5 stars, 41 comments)

(+) The room was clean and everything worked fine – even the water pressure...
(+) We went because of the free room and was pleasantly pleased...
(-) ...the worst hotel I had ever stayed at...

Service (3/5 stars, 31 comments)

(+) Upon checking out another couple was checking early due to a problem...
(+) Every single hotel staff member treated us great and answered every...
(-) The food is cold and the service gives new meaning to SLOW.

Dining (3/5 stars, 18 comments)

(+) our favorite place to stay in biloxi.the food is great also the service...
(+) Offer of free buffet for joining the Play
Baseline methods assume classes have equal frequencies!

• If not balanced (common in the real world)
 • can’t use accuracies as an evaluation
 • need to use F-scores

• Severe imbalancing also can degrade classifier performance

• Two common solutions:
 1. Resampling in training
 • Random undersampling
 2. Cost-sensitive learning
 • Penalize SVM more for misclassification of the rare thing
How to deal with 7 stars?

1. Map to binary

2. Use linear or ordinal regression
 - Or specialized models like metric labeling

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. ACL, 115–124
Summary on Sentiment

- Generally modeled as classification or regression task
 - predict a binary or ordinal label
- Features:
 - Negation is important
 - Using all words (in naïve bayes) works well for some tasks
 - Finding subsets of words may help in other tasks
 - Hand-built polarity lexicons
 - Use seeds and semi-supervised learning to induce lexicons
Scherer Typology of Affective States

- **Emotion**: brief organically synchronized ... evaluation of a major event
 - angry, sad, joyful, fearful, ashamed, proud, elated
- **Mood**: diffuse non-caused low-intensity long-duration change in subjective feeling
 - cheerful, gloomy, irritable, listless, depressed, buoyant
- **Interpersonal stances**: affective stance toward another person in a specific interaction
 - friendly, flirtatious, distant, cold, warm, supportive, contemptuous
- **Attitudes**: enduring, affectively colored beliefs, dispositions towards objects or persons
 - liking, loving, hating, valuing, desiring
- **Personality traits**: stable personality dispositions and typical behavior tendencies
 - nervous, anxious, reckless, morose, hostile, jealous
Computational work on other affective states

- **Emotion:**
 - Detecting annoyed callers to dialogue system
 - Detecting confused/frustrated versus confident students

- **Mood:**
 - Finding traumatized or depressed writers

- **Interpersonal stances:**
 - Detection of flirtation or friendliness in conversations

- **Personality traits:**
 - Detection of extroverts
Detection of Friendliness

Ranganath, Jurafsky, McFarland

• Friendly speakers use collaborative conversational style
 • Laughter
 • Less use of negative emotional words
 • More sympathy
 • That’s too bad I’m sorry to hear that
 • More agreement
 • I think so too
 • Less hedges
 • kind of sort of a little ...
Sentiment Analysis

Other Sentiment Tasks