
Discussion Session Problems 2

01/22/2026

1. Which of the following methods do we use to best fit the data in Logistic Regression?

A) Least Squares Error

B) Maximum Likelihood

C) Both A and B

Answer: B)
Logistic regression is based on maximum likelihood estimation.

2. You are given a coin whose probability of landing on Heads is p. We toss the coin 10 times and observe
7 Heads. What is the most likely value of p?

A) 7/10

B) 5/10

C) 3/10

Answer: A)

3. Which of the following evaluation metrics does not make sense if applied to logistic regression output
to compare with the target?

A) Accuracy

B) Log loss

C) Mean Squared Error

Answer: C)
Mean squared error is appropriate for linear regression, not logistic regression.

4. What can you say about feature normalization in logistic regression?

A) It is good practice but not strictly required

B) It is required

C) It is bad practice and should not be performed

D) None of the above

Answer: A)
Feature normalization helps gradient-based optimization converge faster. It is not strictly required for
logistic regression, but it is required when using regularization.

5. Consider m independent and identically distributed (i.i.d.) random variables x1, . . . , xm drawn from a
Geometric distribution with parameter p. In other words, xi ∼ Geo(p) for all 1 ≤ i ≤ m.
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(a) Derive the maximum likelihood estimate (MLE) for p.
The probability mass function of a Geometric random variable with parameter p is

f(Xi | p) = p(1− p)Xi−1, Xi ≥ 1.

Assuming m independent observations X1, X2, . . . , Xm, the likelihood function is

L(p) =

m∏
i=1

p(1− p)Xi−1.

Taking the logarithm of the likelihood, we obtain the log-likelihood:

LL(p) =

m∑
i=1

[log p+ (Xi − 1) log(1− p)] .

We now take the derivative of LL(p) with respect to p and set it equal to zero:

dLL(p)

dp
=

m∑
i=1

(
1

p
− Xi − 1

1− p

)
= 0.

Solving for p, we get

m

p
=

1

1− p

m∑
i=1

(Xi − 1).

Rewriting,

1− p

p
=

1

m

m∑
i=1

(Xi − 1),

which implies

1

p
− 1 =

1

m

m∑
i=1

(Xi − 1).

Therefore, the maximum likelihood estimate of p is

p̂MLE =
1

1
m

∑m
i=1 Xi

=
1

X̄

(b) Given x = {4, 3, 4, 2, 7}, compute p̂MLE . Namely, the value of p in the Geometric distribution
that would maximize the likelihood of these observations.

p̂ =
1

(4 + 3 + 4 + 2 + 7)/5
=

5

20
= 0.25

6. In this problem, we simultaneously estimate the difficulty of problem set questions and the skill level
of each student.

Consider a set of 200 students and 10 questions, where each student answers each question. Let Sij be
an indicator variable such that

Sij =

{
1 if student i answers question j correctly

0 otherwise

We assume that the probability that student i answers question j correctly is

pij = σ(ai − dj),

where:
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• σ(·) is the sigmoid function,

• ai represents the ability of student i,

• dj represents the difficulty of question j.

We use Maximum Likelihood Estimation (MLE) to estimate all parameters.

(a) Write the log-likelihood for a single response Sij in terms of pij . Hint: logistic regression also
assumes that its output is a probability of a binary event.

(b) Compute the partial derivative of the log-likelihood for a single response Sij with respect to ai.

(c) Compute the partial derivative of the log-likelihood for a single response Sij with respect to dj .

(d) Explain briefly how the parameters can be estimated using derivatives of log-likelihood with
respect to those parameters.

(a) Log-likelihood for a single response

Liklihood = p
Sij

ij (1− pij)
1−Sij .

Log Likelihood = Sij log(pij) + (1− Sij) log(1− pij).

(b) Partial derivative with respect to ai

For a single response Sij , the log-likelihood is

LLij = Sij log(pij) + (1− Sij) log(1− pij).

We apply the chain rule:
∂LLij

∂ai
=

∂LLij

∂pij
· ∂pij
∂ai

.

First,
∂LLij

∂pij
=

Sij

pij
− 1− Sij

1− pij
.

Since pij = σ(ai − dj) and σ′(x) = σ(x)(1− σ(x)),

∂pij
∂ai

= pij(1− pij).

Multiplying,
∂LLij

∂ai
=

(
Sij

pij
− 1− Sij

1− pij

)
pij(1− pij) = Sij − pij .

∂LLij

∂ai
= Sij − pij

(c) Partial derivative with respect to dj

Again applying the chain rule,
∂LLij

∂dj
=

∂LLij

∂pij
· ∂pij
∂dj

.
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From above,
∂LLij

∂pij
=

Sij

pij
− 1− Sij

1− pij
.

Since
∂(ai − dj)

∂dj
= −1,

we have
∂pij
∂dj

= − pij(1− pij).

Thus,
∂LLij

∂dj
= −

(
Sij

pij
− 1− Sij

1− pij

)
pij(1− pij) = −(Sij − pij).

∂LLij

∂dj
= −(Sij − pij)

(d) Parameter estimation

The parameters {ai} and {dj} can be estimated using gradient ascent. At each iteration, we update
the parameters in the direction of the gradient using a fixed learning rate until convergence. Just like
when we implemented logistic regression, we can program our closed form mathematical solution for
gradients to efficiently calculate the gradient for any values of our parameters.

7. Suppose a logistic regression model is

fw,b(x) = g(w1x1 + w2x2 + b)

with b = 6, w1 = 0, w2 = −1, and g is the sigmoid function. Which figure corresponds to the decision
boundary?

Answer: B)
The decision boundary is defined by:

w1x1 + w2x2 + b = 0 ⇒ 0 · x1 + (−1) · x2 + 6 = 0 ⇒ x2 = 6

The boundary is the horizontal line x2 = 6 in options A and B. Option B is the right answer because
when you put the value x2 > 6 in the equation y = g(−x2 + 6), you will get values closer to 0, so the
output will be the region y = 0.

8. If w is constant, what is the slope of the logistic function at x = 0 for g(wx)?

A) w

B) w/4

C) 1/4

D) w2
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Answer: B)
Since g′(z) = g(z)(1− g(z)) and g(0) = 1/2, we know that g′(0) = 1

2 · 1
2 = 1

4 . If we take the derivative
with respect to x, we get:

d

dx
g(wx)

∣∣∣
x=0

=
w

4

9. Consider fw,b = g(w1X + b), where w1 is the coefficient and b is the intercept. Below are two different
logistic models with different values for w1 and b. Which of the following statement(s) is true? The
model represented by the green line starts on top.

• w1 for Green is greater than Black

• w1 for Green is smaller than Black

• w1 for both models is the same

• We cannot say for certain the relationship between the w1 for Green and the w1 for Black.

Answer: B)

10. What can you say about regularized vs. non-regularized logistic regression?

A) It will perform better on the training set

B) We expect it to perform better on the training set

C) It will perform better on the test set

D) We expect it to perform better on the test set

Answer: D)
Regularization reduces overfitting, so we expect improved generalization performance on unseen data.

11. In logistic regression, what happens to the predicted probability p = σ(z) as z → +∞ and z → −∞?

A) p → 0 as z → +∞, p → 1 as z → −∞
B) p → 1 as z → +∞, p → 0 as z → −∞
C) p → 0.5 in both cases

D) p oscillates between 0 and 1

Answer: B)
The sigmoid function asymptotically approaches 1 for large positive inputs and 0 for large negative
inputs.
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12. Suppose a dataset is perfectly linearly separable. What can happen to the magnitude of the weights
learned by unregularized logistic regression?

A) The weights converge to zero

B) The weights converge to a finite value

C) The weights can grow arbitrarily large

D) The algorithm fails immediately

Answer: C)
For linearly separable data, the maximum likelihood solution drives the weights toward infinity unless
regularization is used.

13. Suppose a logistic regression model outputs probabilities very close to 0 or 1 for most training examples.
Which of the following is the most likely explanation?

A) The model is underfitting

B) The model weights have very small magnitude

C) The model is highly confident in its predictions

D) The learning rate is too small

Answer: C)
Probabilities near 0 or 1 indicate that the model is very confident in its predictions.

14. Which of the following best explains why we take the logarithm of the likelihood in logistic regression?

A) To make the likelihood larger

B) To convert products over data points into sums

C) To ensure predictions lie between 0 and 1

D) To remove the need for regularization

Answer: B)
Taking the log turns a product of probabilities into a sum, which simplifies optimization and numerical
stability.

15. Consider a binary classification problem with a very imbalanced dataset (e.g., 99% of labels are 0).
Which issue is most likely to arise when training logistic regression?

A) The model cannot be trained using gradient descent

B) Accuracy may be misleading as an evaluation metric

C) The sigmoid function becomes non-differentiable

D) Regularization has no effect

Answer: B)
In highly imbalanced datasets, a model that always predicts the majority class can achieve high accu-
racy while performing poorly.

16. Which of the following statements about the intercept (bias) term in logistic regression is true?

A) It controls the slope of the decision boundary

B) It shifts the decision boundary without changing its orientation

C) It is unnecessary if features are normalized

D) It must always be regularized
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Answer: B)
The intercept shifts the decision boundary while the weights control its orientation.

17. Suppose we increase the strength of L2 regularization in logistic regression. Which of the following
effects do we expect?

A) Training loss decreases

B) Weight magnitudes decrease

C) The decision boundary becomes more complex

D) The model fits noise more closely

Answer: B)
Stronger L2 regularization penalizes large weights, encouraging smaller parameter values.
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