
CS 129
Problem Set 2

Instructors: Andrew Ng, Younes Bensouda Mourri

Due: 11:59pm Tuesday Feb 10th, 2026

Problem 1: Locally Weighted Linear Regression

We are given the following dataset relating an input independent variable x to an output dependent variable
y.

Figure 1: Observed data points

1. (2 points) Explain why fitting a simple linear regression model (i.e, fw,b = wx + b) to this dataset
would likely result in underfitting.

Your Solution Here

2. (2 points) One alternative is to fit a high-degree polynomial regression model (i.e, fw,b = w1x+w2x
2+

...+ b). What practical difficulty arises when choosing this type of model for the data shown?
[Hint: Think about what must be specified before training.]

Your Solution Here

3. (4 points) Locally weighted regression addresses these issues by fitting a separate linear model for
each query point (the point for which we are making the prediction). In contrast to standard linear
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regression, which is a parametric model with a single global set of parameters, locally weighted
regression is a non-parametric method. This means the model adapts to the data locally rather than
assuming one fixed functional form across the entire input space.

For a query point xq, locally weighted regression assigns a weight to each training example x(i) based
on its distance from xq:

w(i) = exp

(
− (x(i) − xq)

2

2τ2

)
.

If xq = 1, x(1) = 2, x(2) = 5, and τ = 0.5, compute w(1), w(2). What happens to the weights w(i) as
|x(i) − xq| increases and decreases?

Your Solution Here

4. (4 points) τ is the bandwidth parameter the engineer selects that controls how quickly the influence of
points decreases with distance.

Figure 2: Locally weighted regression with varying values for τ .

2



What happens to the weights w(i) for large and small τ? What respective effect does this have on the
accuracy of predictions?

Your Solution Here

5. (6 points) Once the weights w(i) have been computed for all training examples, locally weighted re-
gression fits a locally weighted least squares problem:

J(θ) =

m∑
i=1

w(i)
(
θ Tx(i) − y(i)

)2

,

where θ represents the parameters (or weights) of the model that we need to optimize. This is similar
to ordinary linear regression, except each training example contributes according to its weight.

Each training input x(i) is an n-dimensional column vector. Each output y(i) is a scalar, and each
example weight w(i) is also a scalar.

Let W be a m×m diagonal matrix with entries w(i) on the diagonal. Let X be an m×n matrix whose
i-th row is (x(i))T , let Y be the m× 1 vector of true values, and let θ be the n× 1 parameter vector.

Derive the normal equations for this cost function. In other words, find θ that minimizes the cost
function J(θ) as a function of X, Y , and W . [Hint: First write J(θ) in matrix (vectorized) form.]

Note: In Coursera, the linear regression model is written using weights w and bias b. In this question,
we instead use θ to denote the model parameter vector in order to avoid confusion with the example
weights w(i) used in locally weighted regression. For simplicity, we omit the bias term b in this
derivation; including it would not change the main ideas of the computation.

Your Solution Here

6. (2 points) Finally, the prediction at the query point is computed using the same form as

ŷq = θTxq.

Now that you have seen how locally weighted regression words, what is a limitation to this method?
[There are many answers; you only need one.]

Your Solution Here
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Problem 2: Bias-Variance tradeoff

One of the key results in Machine Learning is the Bias-Variance tradeoff. We will see in class the intuition
and the implications of this important result but in this question, you will prove the result.

Linear Regression Assumptions. In linear regression, the labels are assumed to be generated with
the following assumptions:

• Y = f(x⃗)+ ϵ (ϵ is a random variable that represents noise, f is deterministic and is a model that maps
x⃗ to Y )

• ϵ is independent of x⃗ and therefore also independent of f(x⃗)

• ϵ has mean 0 and variance σ2

Using a dataset of (x⃗(i), y(i)) pairs, we build f̂ which is an estimator of the underlying true model. Please
note the following two things:

• Because the labels (the y’s) in the train dataset are random variables, f̂ is a random variable.

• While the labels are random variables, you can consider that the input data (each x⃗) as given. There-
fore, you should treat it as deterministic (a constant) and not a random variable. As a result, f(x⃗) is
also deterministic.

Expected Error. From here on out, let x⃗ denote a single test example. The error of the model on this
single data point is defined as:

Err = E
[ (

Y − f̂(x⃗)
)2 ]

where Y is the true label which is a random variable.

1. (4 points) Prove the following:

Err = E
[ (

f(x⃗)− f̂(x⃗)
)2 ]

+ E
[
ϵ2
]
+ 2E

[ (
f(x⃗)− f̂(x⃗)

)
ϵ
]

Your Solution Here

2. (4 points) Prove the following:

E
[ (

f(x⃗)− f̂(x⃗)
)
ϵ
]
= 0

Your Solution Here

3. (4 points) We define the bias of the model as the expected distance between the model and the

hypothesis: Bias = E
[
f(x⃗)− f̂(x⃗)

]
. Prove the following:

E
[ (

f(x⃗)− f̂(x⃗)
)2 ]

= Var
[
f̂(x⃗)

]
+ E

[
f(x⃗)− f̂(x⃗)

]2
Your Solution Here

4. (4 points) Derive the expression of the error. Based on this expression, is it possible to achieve a model

with 0 expected error? Why, or why not? Note: your result should only depend on Var
[
f̂(x⃗)

]
, Bias,

and σ.

Your Solution Here
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Problem 3: Softmax Classification

In this question, you will revisit the softmax method for multi-class classification you saw on Coursera.
Assume there are K classes. We define a weight matrix W such that Wi represents a column vector of
weights used to classify class i. The probability assumption of the softmax model for a given class k and
datapoint x⃗ is the following:

P
(
Y = k|x⃗,W, b) =

1

Z
ex⃗

TWk+bk

Note 1 : x⃗ is a column vector.

1. (4 points) Compute Z, i.e. find an expression of P
(
Y = k|x⃗,W, b) that only depends on Wi, bi, and x⃗

(where i is any specific class).

Your Solution Here

2. (4 points) After computing the probability of belonging to class k for all k, how do we assign a class?
In other words, given the probabilities, what is the decision rule?

Your Solution Here

3. (4 points) One of the problems of this softmax method, is that if x⃗TWk + bk is large, its exponential
will be extremely large. Therefore, we will face overflow errors. One of the methods used to mitigate
this effect is to replace x⃗TWk + bk by x⃗TWk + bk − α where α = max

j
[x⃗TWj + bj ]. Show that this

method does not change the probability values and explain why overflow is mitigated.

Your Solution Here

4. (4 points) Softmax regression uses Cross-Entropy Loss to measure the performance of a classification
model. The cost for a single datapoint is

J(W ) = − log
[
P
(
Y = k|x⃗,W, b

)]
.

Derive the gradient of the single-datapoint loss with respect to Wk.

Your Solution Here

5. (4 points) For what value of K is the softmax model equivalent to logistic regression? Mathematically
show this equivalence.

Your Solution Here
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Problem 4: Forward and Back Propagation

The architecture of the model you will be working with is defined below. You have 20 training examples and
5 features.

Figure 3: Architecture of the network

• Input layer

• Hidden layer 1 (dim = 3)

• Hidden layer 2 (dim = 4)

• Output layer (dim = 2)

Notes:

1. Let g denote the sigmoid activation function.

2. For a matrix X whose columns are composed of training examples xi, the forward propagation for
layer l ∈ {1, 2, 3} is defined as

Z [l] = (A[l−1])TW [l] + 120×1b
[l], where

• A[l−1] is the input to layer l (A[0] = X, (A[1])T = g(Z [1]), (A[2])T = g(Z [2])),

• W [l] is the weight matrix for layer l,

• b[l] is the bias vector for layer l,

• Z [l] is the pre-activation output of layer l,

• A[l] is the post-activation output of layer l.
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1. (1 point) What is the dimension of X, the matrix that contains all the example inputs (excluding bias),
that you are going to feed into your neural network?

Your Solution Here

2. (3 points) What are the dimensions of W [1], W [2], W [3] ?

Your Solution Here

3. (3 points) What are the dimensions of b[1], b[2], b[3] (we’re asking for number of rows, and number of
columns for each)?

Your Solution Here

4. (1 point) How many parameters are we training in our model? Hint : do not forget the bias!

Your Solution Here

5. (2 points) What are the dimensions of A[1], A[2], where A[1] corresponds to the input to the second
layer. Hint : consider how many examples we are tracking through the layers.

Your Solution Here

6. (4 points) Write the feed-forward equations of this neural network for a single training example (column)
vector xi, from the beginning to the cost function J (i.e., give expressions for Z [1], (A[1])T , Z [2], (A[2])T , Z [3], ŷT , J).
Make sure your dimensions match. You can use the functions Softmax(z) (the softmax function) and
CE(ŷ, y) (the cross-entropy function) in your solution. No coding! Note: assume that the activation
function is the sigmoid, g, for the first and second layer. For the last layer, use a softmax function.
Hint : do not forget the bias!

Your Solution Here

7. So far, we only used the sigmoid function as an activation function. However, there are other popular
functions.

(a) (2 points) A similar function to the sigmoid is the hyperbolic tangent:

tanh(x) =
ex − e−x

ex + e−x

Prove that tanh is bounded by 1, i.e.

∀x, | tanh(x)| < 1

Your Solution Here

(b) (3 points) Compute the derivative of tanh. We proved that the derivative of the sigmoid, g(x),
is g(x)(1 − g(x)). In a similar way, you should be able to find an expression of the derivative of
tanh that only depends on tanh.

Your Solution Here

(c) (10 points) Let’s now use the hyperbolic tangent as the activation function in the two hidden
layers. Write the vectorized backpropagation equations of this modified neural network, for a
single training example vector x. In other words, compute ∂J

∂W [1] ,
∂J

∂W [2] ,
∂J

∂W [3] . Note: ∂J
∂W [l] it

defined such that it has the same shape as W . Hint : we still use the softmax for the last layer
(so there is nothing to modify in that step).

Your Solution Here
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Problem 5: Geometric Understanding of Regularization

We consider a linear regression model with two input features, weights, and a bias:

fw,b(x) = w1x1 + w2x2 + b

The cost function is:

J(w1, w2, b) =
1

2m

m∑
i=1

(
fw,b(x

(i))− y(i)
)2

Gradient descent updates the parameters to minimize prediction error.

Two common regularized versions are:

L2 (Ridge): JL2(w⃗) = J(w⃗) +
λ

2m

(
w2

1 + w2
2

)
L1 (Lasso): JL1(w⃗) = J(w⃗) +

λ

2m
(|w1|+ |w2|)

where λ > 0 controls the strength of regularization.

Note: In the gradient expressions below, constant factors (such as 1/m) are absorbed into λ for simplicity.

1. (2 points) Without regularization, what objective is gradient descent minimizing? After adding regu-
larization, what additional goal does gradient descent now have besides reducing prediction error?

Your Solution Here

2. (2 points) Imagine plotting:

• w1 on one horizontal axis

• w2 on the other horizontal axis

• The cost J(w1, w2) on the vertical axis

This forms a 3D bowl-shaped surface.

(a) Explain why this surface has a single global minimum when the problem is convex.

(b) If we take a horizontal slice of this surface at a fixed cost value, what kind of shape do you expect
to see in the (w1, w2) plane? Explain why.

Your Solution Here

3. (2 points) When we use least-squares loss, fixing the cost to a constant value produces smooth, closed
curves in the (w1, w2) plane. Why do smaller ellipses represent lower cost?

Your Solution Here

4. (2 points) In the 3D plot of (w1, w2, J), the cost surface forms a convex bowl with one lowest point.
Elliptical contours are horizontal slices of this surface. Explain why the center of the ellipses corresponds
to the minimum-cost solution found by gradient descent without regularization.

Your Solution Here

5. (4 points) For L2 regularization, the gradient update becomes:

∂JL2

∂wi
=

∂J

∂wi
+ λwi
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(a) Explain why this creates a pull toward zero that gets weaker as weights become small.

(b) Why does this cause weights to shrink smoothly but rarely become exactly zero?

Your Solution Here

6. (3 points) For L1 regularization, the gradient update becomes:

∂JL1

∂wi
=

∂J

∂wi
+ λ · sign(wi)

This means the regularization term always adds +λ or −λ, regardless of how small the weight is.

In 3–4 sentences, explain why L1 regularization applies a constant-magnitude push toward zero,
can drive weights exactly to zero (producing sparse solutions), and does not cause weights to oscillate
forever around zero.

Your Solution Here

7. (2 points)

(a) Under L2 regularization, do weights shrink gradually or snap to zero?

(b) Under L1 regularization, why does gradient descent often produce a sparse model (many weights
exactly zero)?

Your Solution Here

8. (2 points) If you believe only a few features are truly important, which regularization method would
you choose?

• L1 (Lasso)

• L2 (Ridge)

Justify your answer in one sentence.

Your Solution Here
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