
CS142 Lecture Notes - Events

Events
Mendel Rosenblum

CS142 Lecture Notes - Events

DOM communicates to JavaScript with Events
Event types:
● Mouse-related: mouse movement, button click, enter/leave element
● Keyboard-related: down, up, press
● Focus-related: focus in, focus out (blur)
● Input field changed, Form submitted
● Timer events
● Miscellaneous:

○ Content of an element has changed
○ Page loaded/unloaded
○ Image loaded
○ Uncaught exception

CS142 Lecture Notes - Events

Event handling
Creating an event handler: must specify 3 things:

● What happened: the event of interest.

● Where it happened: an element of interest.

● What to do: JavaScript to invoke when the event occurs on the element.

CS142 Lecture Notes - Events

Specifying the JavaScript of an Event
● Option #1: in the HTML:

<div onclick="gotMouseClick('id42'); gotMouse=true;">...</div>

● Option #2: from Javascript using the DOM:

element.onclick = mouseClick;

or
element.addEventListener("click", mouseClick);

● Example of the powerful listener/emitter pattern

CS142 Lecture Notes - Events

Event object
● Event listener functions passed an Event object

Typically sub-classed MouseEvent, KeyboardEvent, etc.

● Some Event properties:

type - The name of the event ('click', 'mouseDown', 'keyUp', …)

timeStamp - The time that the event was created

 currentTarget - Element that listener was registered on

 target - Element that dispatched the event

CS142 Lecture Notes - Events

MouseEvent and KeyboardEvent
● Some MouseEvent properties (prototype inherits from Event)

button - mouse button that was pressed

pageX, pageY: mouse position relative to the top-left corner of document

screenX, screenY: mouse position in screen coordinates

● Some KeyboardEvent properties (prototype inherits from Event)

keyCode: identifier for the keyboard key that was pressed
Not necessarily an ASCII character!

charCode: integer Unicode value corresponding to keypress, if there is one.

CS142 Lecture Notes - Events

Draggable Rectangle - HTML/CSS
<style type="text/css">

 #div1 {

position: absolute;

 }

</style>

...

<div id="div1" onmousedown="mouseDown(event);"

onmousemove="mouseMove(event);"

onmouseup="mouseUp(event);">Drag Me!</div>

Draggable Rectangle - JavaScript
var isMouseDown = false; // Dragging?

var prevX, prevY;

function mouseDown(event) {

 prevX = event.pageX;

 prevY = event.pageY;

 isMouseDown = true;

}

function mouseUp(event) {

 isMouseDown = false;

}

function mouseMove(event) {

 if (!isMouseDown) {

 return;

 }

 var elem = document.getElementById("div1");

 elem.style.left = (elem.offsetLeft +

 (event.pageX - prevX)) + "px";

 elem.style.top = (elem.offsetTop +

 (event.pageY - prevY)) + "px";

 prevX = event.pageX;

 prevY = event.pageY;

}

CS142 Lecture Notes - Events

Deciding which handler(s) are invoked for an event?
● Complicating factor: elements can contain or overlap other elements

Suppose user clicks with the mouse on "xyz" in:
<body>

 <table>

 <tr>

 <td>xyz</td>

 </tr>

 </table>

</body>

If I have handlers on the td, tr, table, and body elements which get called?
● Sometimes only the innermost element should handle the event
● Sometimes it's more convenient for an outer element to handle the event

CS142 Lecture Notes - Events

Capturing and Bubbling Events
● Capture phase (or "trickle-down"):

○ Start at the outermost element and work down to the innermost nested element.
○ Each element can stop the capture, so that its children never see the event

event.stopPropagation()

element.addEventListener(eventType, handler, true);

● Bubble phase - Most on handlers (e.g. onclick) use bubble, not onfocus/blur
● Invoke handlers on the innermost nested element that dispatches the event (mostly right thing)
● Then repeat on its parent, grandparent, etc. Any given element can stop the bubbling:

event.stopPropagation()

element.addEventListener(eventType, handler, false);

● Handlers in the bubble phase more common than capture phase

CS142 Lecture Notes - Events

Example: Timer Events
● Run myfunc once, 5 seconds from now:

token = setTimeout(myFunc, 5*1000);

Function is called in specified number of milliseconds

● Run myfunc every 50 milliseconds:
token = setInterval(myfunc, 50);

● Cancel a timer:
clearInterval(token);

● Used for animations, automatic page refreshes, etc.

CS142 Lecture Notes - Events

Event Concurrency
● Events are serialized and processed one-at-a-time

● Event handling does not interleave with other Javascript execution.
○ Handlers run to completion
○ No multi-threading.

● Make reasoning about concurrency easier
○ Rarely need locks.

● Background processing is harder than with threads

CS142 Lecture Notes - Events

Event-based programming is different
● Must wait for someone to invoke your code.

● Must return quickly from the handler (otherwise the application will lock up).

● Key is to maintain control through events: make sure you have declared
enough handlers; last resort is a timer.

● Node.js uses event dispatching engine in JavaScript for server programming

