
CS142 Lecture Notes - Large-Scale Web Apps

Large-Scale Web
Applications

Mendel Rosenblum

CS142 Lecture Notes - Intro

Web Application Architecture

Web Browser
Web Server /
Application server

 HTTP

Storage System

In
te

rn
et

LA
N

2

CS142 Lecture Notes - Intro

Large-Scale: Scale-Out Architecture

Web Browser
Web Servers

Storage System

In
te

rn
et

3

 HTTP

LA
N

CS142 Lecture Notes - Intro

Scale-out architecture
● Expand capacity by adding more instances

● Contrast: Scale-up architecture - Switch to a bigger instance
○ Quickly hit limits on how big of single instances you can build

● Benefits of scale-out
○ Can scale to fit needs: Just add or remove instances
○ Natural redundancy make tolerating failures easier: One instance dies others keep working

● Challenge: Need to manage multiple instances and distribute work to them

CS142 Lecture Notes - Large-Scale Web Apps

Scale out web servers: Which server do you use?
● Browsers want to speak HTTP to a web server - TCP/IP connect

● Use load balancing to distribute incoming HTTP requests across many
front-end web servers

● HTTP redirection (e.g. HotMail):
○ Front-end machine accepts initial connections
○ Redirects them among an array of back-end machines

● DNS (Domain Name System) load balancing:
○ Specify multiple targets for a given name
○ Handles geographically distributed system
○ DNS servers rotate among those targets

CS142 Lecture Notes - Large-Scale Web Apps

Load-balancing switch ("Layer 4-7 Switch")
● Special load balancer network switch

○ Incoming packets pass through load balancer switch between Internet and web servers

○ Load balancer directs TCP connection request to one of the many web servers

○ Load balancer will send all packets for that connection to the same server.

● In some cases the switches are smart enough to inspect session cookies, so
that the same session always goes to the same server.

● Stateless servers make load balancing easier (different requests from the
same user can be handled by different servers).

● Can select web server based on random or on load estimates

CS142 Lecture Notes - Large-Scale Web Apps

nginx ("Engine X")
● Super efficient web server (i.e. speaks HTTP)

○ Handles 10s of thousands of HTTP connections

● Uses:
○ Load balancing - Forward requests to collection of front-end web servers

○ Handles front-end web servers coming and going (dynamic pools of server)
■ Fault tolerant - web server dies the load balance just quits using it

○ Handles some simple request - static files, etc.

○ DOS mitigation - request rate limits

● Popular approach to shielding Node.js web servers

CS142 Lecture Notes - Large-Scale Web Apps

Scale-out assumption: any web server will do
● Stateless servers make load balancing easier

○ Different requests from the same user can be handled by different servers
○ Requires database to be shared across web servers

● What about session state?
○ Accessed on every request so needs to be fast (memcache?)

● WebSockets bind browsers and web server
○ Can not load balance each request

CS142 Lecture Notes - Large-Scale Web Apps

Scale-out storage system
● Traditionally Web applications have started off using relational databases

● A single database instance doesn't scale very far.

● Data sharding - Spread database over scale-out instances
○ Each piece is called data shard
○ Can tolerate failures by replication - place more than one copy of data (3 is common)

● Applications must partition data among multiple independent databases,
which adds complexity.

○ Facebook initial model: One database instance per university
○ In 2009: Facebook had 4000 MySQL servers - Use hash function to select data shard

CS142 Lecture Notes - Large-Scale Web Apps

Memcache: main-memory caching system
● Key-value store (both keys and values are arbitrary blobs)

● Used to cache results of recent database queries

● Much faster than databases:
○ 500-microsecond access time, vs. 10's of milliseconds

● Example: Facebook had 2000 memcache servers by 2009
○ Writes must still go to the DBMS, so no performance improvement for them
○ Cache misses still hurt performance
○ Must manage consistency in software (e.g., flush relevant memcache data when database

gets modified)

CS142 Lecture Notes - Large-Scale Web Apps

Scale-out web architecture

 Internet Load Balancer

Web Server

Web Server

Web Server

Web Server

Web Server

Web Server

Web Server

Web Server

Database Server

Database Server

Database Server

Database Server

Database Server

Memcache

Memcache

Memcache

Memcache

CS142 Lecture Notes - Large-Scale Web Apps

Building this architecture is hard
● Large capital and time cost in buying and installing equipment

● Must become expert in datacenter management

● Figuring out the right number of different components hard

○ Depends on load demand

CS142 Lecture Notes - Large-Scale Web Apps

Scaling issues were hard for early web app
● Startup: Initially, can't afford expensive systems for managing large scale.

● But, application can suddenly become very popular ("flash crowd"); can be
disastrous if application can not scale quickly.

● Many of the early web apps either lived or died by the ability to scale

○ Friendster vs. Facebook

CS142 Lecture Notes - Large-Scale Web Apps

Virtualization - Virtual and Physical machines

Load Balancer

Web Server

Database Server

Memcache

Virtual Machines Images
(Disk Images)

server server server

server server server

server server server

server server server

server server server

server server server

Physical Machines

Virtualization layer

Load balancer 1

Web Server 100

Database 50

Memcache 20

CS142 Lecture Notes - Large-Scale Web Apps

Cloud Computing
● Idea: Use servers housed and managed by someone else

○ Use Internet to access them

● Virtualization is a key enabler

Specify your compute, storage, communication needs:
Cloud provider does the rest

● Examples:
Amazon EC2
Microsoft Azure
Google Cloud
Many others

Load balancer 1

Web Server 100

Database 50

Memcache 20

CS142 Lecture Notes - Large-Scale Web Apps

Cloud Computing Advantages
● Key: Pay for the resources you use

○ No upfront capital cost
○ Need 1000s machines right now? Possible
○ Perfect fit for startups:

■ 1998 software startup: First purchase: server machines
■ 2012 software startup: No server machines

● Typically billing is on resources:
○ CPU core time, memory bytes, storage bytes, network bytes

● Runs extremely efficiently
○ Buy equipment in large quantities, get volume discounts
○ Hirer a few experts to manage large numbers of machines
○ Place servers where space, electricity, and labor is cheap

CS142 Lecture Notes - Large-Scale Web Apps

Higher level interfaces to web app cloud services
● Managing a web app backend at the level of virtual machines requires system

building skills

● If you don't need the full generality of virtual machines you can use some
already scalable platform.

○ Don't need to manage OSes: Container systems like Docker/Kubernetes
■ Specify programs and dependencies that run as a process

○ Don't need to manage storage - Cloud database storage
■ Let the cloud run the database

○ Don't need to manage instances/load balancing: Serverless
■ Let the cloud run the scale-out compute infrastructure

CS142 Lecture Notes - Large-Scale Web Apps

Cloud Database Storage
● Rather than running database instances - Use cloud run databases

○ Cloud provider has experts at running large scale systems

● Example: Google Spanner, Amazon DynamoDB
○ You: define schama, provide data, access using queries
○ Cloud provider: runs storage services

● Features:
○ High Available
○ High Performance
○ Global replication and region containment
○ Consistency
○ Security
○ Usage based pricing

CS142 Lecture Notes - Large-Scale Web Apps

Serverless approach: Amazon Lambda
● You provide pieces of code, URLs associated with each piece of code

● Amazon Lambda does the rest:
○ Allocate machines to run your code
○ Arrange for name mappings so that HTTP requests find their way to your code
○ Scale machine allocations up and down automatically as load changes
○ Lambda environment also includes a scalable storage system

● More constrained environment
○ Must use their infrastructure and supported environments: Python, JavaScript, Java, Go, ...

CS142 Lecture Notes - Large-Scale Web Apps

Serverless architecture - Cloud provider
● Hand over web-servers to cloud infrastructure

● Developer just specifies code to run on each URL & HTTP verb
○ Like Node/Express handlers

● Examples:
○ Amazon Lambda Functions
○ Microsoft Azure Functions
○ Google Cloud Functions

● Cloud provides services only (no servers)
○ Handles all scale-out, reliability, infrastructure security, monitoring, etc.
○ Pay by the request - Enable to pack function execution into available server resources

● Web App backend: Schema specification for cloud storage, handler functions

CS142 Lecture Notes - Large-Scale Web Apps

Content Distribution Network (CDN)
● Consider a read-only part of our web app (e.g. image, React JavaScript, etc.)

○ Browser needs to fetch but doesn't care where it comes from

● Content distribution network
○ Has many servers positions all over the world
○ You give them some content (e.g. image) and they give you an URL
○ You put that URL in your app (e.g. <img src="...)
○ When user's browsers access that URL they are sent to the closest server (DNS trick)

● Benefits:
○ Faster serving of app contents
○ Reduce load on web app backend

● Only works on content that doesn't need to change often

CS142 Lecture Notes - Large-Scale Web Apps

Cloud Computing and Web Apps
● The pay-for-resources-used model works well for many web app companies

○ At some point if you use many resources it makes sense to build own data centers

● Many useful infrastructure services available:
○ Auto scaling (spinning up and down instances on load changes)
○ Geographic distribution (can have parts of the backend in different parts of the world)
○ Monitoring and reporting (what parts of web app is being used, etc.)
○ Fault handling (monitoring and mapping out failed servers)

● Cloud Application Programming Interfaces (APIs):
○ Analytics
○ Machine learning - Prediction, recommendation, etc.
○ Translation, image recognition, maps, etc.

