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Large-Scale: Scale-Out Architecture
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Scale-out architecture
● Expand capacity by adding more instances

● Contrast: Scale-up architecture - Switch to a bigger instance
○ Quickly hit limits on how big of single instances you can build

● Benefits of scale-out
○ Can scale to fit needs: Just add or remove instances 
○ Natural redundancy make tolerating failures easier:  One instance dies others keep working 

● Challenge:  Need to manage multiple instances and distribute work to them
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Scale out web servers: Which server do you use?
● Browsers want to speak HTTP to a web server - TCP/IP connect

● Use load balancing to distribute incoming HTTP requests across many 
front-end web servers

● HTTP redirection (e.g. HotMail):
○ Front-end machine accepts initial connections
○ Redirects them among an array of back-end machines

● DNS (Domain Name System) load balancing:
○ Specify multiple targets for a given name
○ Handles geographically distributed system
○ DNS servers rotate among those targets
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Load-balancing switch ("Layer 4-7 Switch")
● Special load balancer network switch

○ Incoming packets pass through load balancer switch between Internet and web servers 

○ Load balancer directs TCP connection request to one of the many web servers 

○ Load balancer will send all packets for that connection to the same server.

● In some cases the switches are smart enough to inspect session cookies, so 
that the same session always goes to the same server.

● Stateless servers make load balancing easier (different requests from the 
same user can be handled by different servers).

● Can select web server based on random or on load estimates
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nginx ("Engine X")
● Super efficient web server  (i.e. speaks HTTP) 

○ Handles 10s of thousands of HTTP connections 

● Uses:
○ Load balancing - Forward requests to collection of front-end web servers

○ Handles front-end web servers coming and going (dynamic pools of server)
■ Fault tolerant - web server dies the load balance just quits using it

○ Handles some simple request - static files, etc.

○ DOS mitigation - request rate limits

● Popular approach to shielding Node.js web servers
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Scale-out assumption: any web server will do
● Stateless servers make load balancing easier 

○ Different requests from the same user can be handled by different servers
○ Requires database to be shared across web servers 

● What about session state?
○ Accessed on every request so needs to be fast (memcache?) 

● WebSockets bind browsers and web server 
○ Can not load balance each request
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Scale-out storage system
● Traditionally Web applications have started off using relational databases

● A single database instance doesn't scale very far.

● Data sharding - Spread database over scale-out instances 
○ Each piece is called data shard
○ Can tolerate failures by replication - place more than one copy of data (3 is common)

● Applications must partition data among multiple independent databases, 
which adds complexity.

○ Facebook initial model: One database instance per university
○ In 2009: Facebook had 4000 MySQL servers - Use hash function to select data shard
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Memcache: main-memory caching system
● Key-value store (both keys and values are arbitrary blobs)

● Used to cache results of recent database queries

● Much faster than databases: 
○ 500-microsecond access time, vs. 10's of milliseconds

● Example: Facebook had 2000 memcache servers by 2009
○ Writes must still go to the DBMS, so no performance improvement for them
○ Cache misses still hurt performance
○ Must manage consistency in software (e.g., flush relevant memcache data when database 

gets modified)
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Scale-out web architecture
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Building this architecture is hard
● Large capital and time cost in buying and installing equipment

● Must become expert in datacenter management

● Figuring out the right number of different components hard

○ Depends on load demand 
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Scaling issues were hard for early web app
● Startup: Initially, can't afford expensive systems for managing large scale.

● But, application can suddenly become very popular ("flash crowd"); can be 
disastrous if application can not scale quickly.

● Many of the early web apps either lived or died by the ability to scale 

○ Friendster vs. Facebook
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Virtualization - Virtual and Physical machines
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Cloud Computing
● Idea: Use servers housed and managed by someone else

○ Use Internet to access them

● Virtualization is a key enabler 

Specify your compute, storage, communication needs:
Cloud provider does the rest

● Examples:
Amazon EC2
Microsoft Azure 
Google Cloud
Many others  
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Web Server 100
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Cloud Computing Advantages 
● Key: Pay for the resources you use 

○ No upfront capital cost 
○ Need 1000s machines right now?  Possible
○ Perfect fit for startups: 

■ 1998 software startup: First purchase: server machines 
■ 2012 software startup: No server machines 

● Typically billing is on resources: 
○ CPU core time, memory bytes, storage bytes, network bytes

● Runs extremely efficiently 
○ Buy equipment in large quantities, get volume discounts
○ Hirer a few experts to manage large numbers of machines
○ Place servers where space, electricity, and labor is cheap 
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Higher level interfaces to web app cloud services
● Managing a web app backend at the level of virtual machines requires system 

building skills

● If you don't need the full generality of virtual machines you can use some 
already scalable platform.

○ Don't need to manage OSes:  Container systems like Docker/Kubernetes
■ Specify programs and dependencies that run as a process

○ Don't need to manage storage - Cloud database storage
■ Let the cloud run the database

○ Don't need to manage instances/load balancing: Serverless
■ Let the cloud run the scale-out compute infrastructure
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Cloud Database Storage
● Rather than running database instances - Use cloud run databases

○ Cloud provider has experts at running large scale systems 

● Example: Google Spanner, Amazon DynamoDB
○ You: define schama, provide data, access using queries
○ Cloud provider: runs storage services 

● Features:
○ High Available
○ High Performance 
○ Global replication and region containment
○ Consistency  
○ Security
○ Usage based pricing
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Serverless approach: Amazon Lambda
● You provide pieces of code, URLs associated with each piece of code

● Amazon Lambda does the rest:
○ Allocate machines to run your code
○ Arrange for name mappings so that HTTP requests find their way to your code
○ Scale machine allocations up and down automatically as load changes
○ Lambda environment also includes a scalable storage system

● More constrained environment
○ Must use their infrastructure and supported environments: Python, JavaScript, Java, Go, ...



CS142 Lecture Notes - Large-Scale Web Apps

Serverless architecture - Cloud provider
● Hand over web-servers to cloud infrastructure 

● Developer just specifies code to run on each URL & HTTP verb 
○ Like Node/Express handlers 

● Examples:
○ Amazon Lambda Functions
○ Microsoft Azure Functions
○ Google Cloud Functions 

● Cloud provides services only (no servers)
○ Handles all scale-out, reliability, infrastructure security, monitoring, etc. 
○ Pay by the request - Enable to pack function execution into available server resources

● Web App backend:  Schema specification for cloud storage, handler functions
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Content Distribution Network (CDN)
● Consider a read-only part of our web app (e.g. image, React JavaScript, etc.)

○ Browser needs to fetch but doesn't care where it comes from

● Content distribution network 
○ Has many servers positions all over the world 
○ You give them some content (e.g. image) and they give you an URL
○ You put that URL in your app (e.g. <img src="...)
○ When user's browsers access that URL they are sent to the closest server (DNS trick)

● Benefits:
○ Faster serving of app contents 
○ Reduce load on web app backend

● Only works on content that doesn't need to change often



CS142 Lecture Notes - Large-Scale Web Apps

Cloud Computing and Web Apps
● The pay-for-resources-used model works well for many web app companies 

○ At some point if you use many resources it makes sense to build own data centers 

● Many useful infrastructure services available:
○ Auto scaling (spinning up and down instances on load changes)
○ Geographic distribution (can have parts of the backend in different parts of the world)
○ Monitoring and reporting (what parts of web app is being used, etc.)
○ Fault handling (monitoring and mapping out failed servers)

● Cloud Application Programming Interfaces (APIs):
○ Analytics 
○ Machine learning - Prediction, recommendation, etc. 
○ Translation, image recognition, maps, etc.


