
CS 143 Compilers

Programming Assignment I

Due Thursday, April 15, 2021 at 11:59pm

1 Overview of the Programming Project

Programming assignments I–IV will direct you to design and build a compiler for Cool. Each assignment
will cover one component of the compiler: lexical analysis, parsing, semantic analysis, and code generation.
Each assignment will ultimately result in a working compiler phase which can interface with other phases.
You will be implementing the projects in C++.

For this assignment, you are to write a lexical analyzer, also called a scanner, using a lexical analyzer
generator called flex. You will describe the set of tokens for Cool in an appropriate input format, and the
analyzer generator will generate the actual code for recognizing tokens in Cool programs.

On-line documentation for all the tools needed for the project will be made available on the course’s
web site. This includes manuals for flex (used in this assignment), the documentation for bison, as well
as the manual for the spim simulator.

You may work either individually or in pairs for this assignment.

2 Introduction to Flex

Flex allows you to implement a lexical analyzer by writing rules that match on user-defined regular
expressions and performing a specified action for each matched pattern. Flex compiles your rule file
(e.g., “lexer.flex”) to C source code implementing a finite automaton recognizing the regular expressions
that you specify in your rule file. Fortunately, it is not necessary to understand or even look at the
automatically generated (and often very messy) file implementing your rules.

Rule files in flex are structured as follows:

%{

Declarations

%}

Definitions

%%

Rules

%%

User subroutines

The Declarations and User subroutines sections are optional and allow you to write declarations and
helper functions in C. The Definitions section is also optional, but often very useful as definitions allow
you to give names to regular expressions. For example, the definition

DIGIT [0-9]

allows you to define a digit. Here, DIGIT is the name given to the regular expression matching any single
character between 0 and 9. The following table gives an overview of the common regular expressions
that can be specified in Flex:

Spring 2021 page 1 of 7



CS 143 Compilers

x the character ”x”
"x" an ”x”, even if x is an operator.
\x an ”x”, even if x is an operator.
[xy] the character x or y.
[x-z] the characters x, y or z.
[^x] any character but x.
. any character but newline.
^x an x at the beginning of a line.
<y>x an x when Flex is in start condition y.
x$ an x at the end of a line.
x? an optional x.
x* 0,1,2, ... instances of x.
x+ 1,2,3, ... instances of x.
x|y an x or a y.
(x) an x.
x/y an x but only if followed by y.
{xx} the translation of xx from the definitions section.
x{m,n} m through n occurrences of x

The most important part of your lexical analyzer is the rules section. A rule in Flex specifies an
action to perform if the input matches the regular expression or definition at the beginning of the rule.
The action to perform is specified by writing regular C source code. For example, assuming that a digit
represents a token in our language (note that this is not the case in Cool), the rule:

{DIGIT} {

cool_yylval.symbol = inttable.add_string(yytext);

return DIGIT_TOKEN;

}

records the value of the digit in the global variable cool_yylval and returns the appropriate token code.
(See Section 5 for a more detailed discussion of the global variable cool_yylval and see Section 4.2 for
a discussion of the inttable used in the above code fragment.)

An important point to remember is that if the current input (i.e., the result of the function call to
yylex()) matches multiple rules, Flex picks the rule that matches the largest number of characters. For
instance, if you define the following two rules

[0-9]+ { // action 1}

[0-9a-z]+ {// action 2}

and if the character sequence 2a appears next in the file being scanned, then action 2 will be performed
since the second rule matches more characters than the first rule. If multiple rules match the same
number of characters, then the rule appearing first in the file is chosen.

When writing rules in Flex, it may be necessary to perform different actions depending on previously
encountered tokens. For example, when processing a closing comment token, you might be interested
in knowing whether an opening comment was previously encountered. One obvious way to track state
is to declare global variables in your declaration section, which are set to true when certain tokens of
interest are encountered. Flex also provides syntactic sugar for achieving similar functionality by using
state declarations such as:

Spring 2021 page 2 of 7



CS 143 Compilers

%Start COMMENT

which can be set to true by writing BEGIN(COMMENT). To perform an action only if an opening comment
was previously encountered, you can predicate your rule on COMMENT using the syntax:

<COMMENT> {

// the rest of your rule ...

}

There is also a special default state called INITIAL which is active unless you explicitly indicate the
beginning of a new state. You might find this syntax useful for various aspects of this assignment, such
as error reporting.

3 Files and Directories

To get started, log in to one of the myth machines and run one of the following commands:

/usr/class/cs143/bin/pa_fetch PA1 <project_directory>

The project directory you specify will be created if necessary, and will contain a few files for you to edit
and a bunch of symbolic links for things you should not be editing. (In fact, if you make and modify
private copies of these files, you may find it impossible to complete the assignment.) See the instructions
in the README file. The files that you will need to modify are:

• cool.flex
This file contains a skeleton for a lexical description for Cool. There are comments indicating where
you need to fill in code, but this is not necessarily a complete guide. Part of the assignment is
for you to make sure that you have a correct and working lexer. Except for the sections indicated,
you are welcome to make modifications to our skeleton. You can actually build a scanner with the
skeleton description, but it does not do much. You should read the flex manual to figure out what the
capabilities of the skeleton description does do. Any auxiliary routines that you wish to write should
be added directly to this file in the appropriate section (see comments in the file).

• test.cl
This file contains some sample input to be scanned. It does not exercise all of the lexical specification,
but it is nevertheless an interesting test. It is not a good test to start with, nor does it provide
adequate testing of your scanner. Part of your assignment is to come up with good testing inputs and
a testing strategy. (Don’t take this lightly—good test input is difficult to create, and forgetting to test
something is the most likely cause of lost points during grading.)

You should modify this file with tests that you think adequately exercise your scanner. Our test.cl is
similar to a real Cool program, but your tests need not be. You may keep as much or as little of our
test as you like. We will grade you on the coverage of your test file—that is, the extent to which your
file exercises as many parts of the lexer as possible.

• README
This file contains detailed instructions for the assignment as well as a number of useful tips. You
should edit this file to include your SUNet ID(s) (see Section 6 for more details).

Although these files are incomplete as given, the lexer does compile and run. To build the lexer,
you must type make lexer.

Spring 2021 page 3 of 7



CS 143 Compilers

4 Scanner Results

In this assignment, you are expected to write Flex rules that match on the appropriate regular expressions
defining valid tokens in Cool as described in Section 10 and Figure 1 of the Cool manual and perform the
appropriate actions, such as returning a token of the correct type, recording the value of a lexeme where
appropriate, or reporting an error when an error is encountered. Before you start on this assignment,
make sure to read Section 10 and Figure 1 of the Cool manual; then study the different tokens defined in
cool-parse.h. Your implementation needs to define Flex rules that match the regular expressions defining
each token defined in cool-parse.h and perform the appropriate action for each matched token. For
example, if you match on a token BOOL CONST, your lexer has to record whether its value is true or
false; similarly if you match on a TYPEID token, you need to record the name of the type. Note that
not every token requires storing additional information; for example, only returning the token type is
sufficient for some tokens like keywords.

Your scanner should be robust—it should work for any conceivable input. For example, you must
handle errors such as an EOF occurring in the middle of a string or comment, as well as string constants
that are too long. These are just some of the errors that can occur; see the manual for the rest.

You must make some provision for graceful termination if a fatal error occurs. Core dumps or
uncaught exceptions are unacceptable.

4.1 Error Handling

All errors should be passed along to the parser. You lexer should not print anything. Errors are com-
municated to the parser by returning a special error token called ERROR. (Note, you should ignore the
token called error [in lowercase] for this assignment; it is used by the parser in PA2.) There are several
requirements for reporting and recovering from lexical errors:

• When an invalid character (one that can’t begin any token) is encountered, a string containing just
that character should be returned as the error string. Resume lexing at the following character.

• When reporting line numbers for a multi-line string, use the last line. In general, the line number
should be where the token ends. This keeps the implementation simple—otherwise you’d have to
track additional state.

• When a string is too long, report the error as "String constant too long" in the error string in
the ERROR token. If the string contains invalid characters (i.e., the null character), report this
as "String contains null character". If a string contains an unescaped newline, report that as
"Unterminated string constant". Report only the first string constant error to occur, and then
resume lexing after the end of the string. The end of the string is defined as either

1. the beginning of the next line if an unescaped newline occurs at any point in the string; or

2. after the closing ” otherwise.

• If a comment remains open when EOF is encountered, report this error with the message "EOF in

comment". Do not tokenize the comment’s contents simply because the terminator is missing. Similarly
for strings, if an EOF is encountered before the close-quote, report this error as "EOF in string

constant".

• If you see “*)” outside a comment, report this error as "Unmatched *)", rather than tokenizing it as
* and ).

Spring 2021 page 4 of 7



CS 143 Compilers

• Recall from lecture that this phase of the compiler only catches a very limited class of errors. Do not
check for errors that are not lexing errors in this assignment. For example, you should not
check if variables are declared before use. Be sure you understand fully what errors the lexing phase
of a compiler does and does not check for before you start.

4.2 String Table

Programs tend to have many occurrences of the same lexeme. For example, an identifier is generally
referred to more than once in a program (or else it isn’t very useful!). To save space and time, a common
compiler practice is to store lexemes in a string table. We provide a string table implementation. See the
following sections for the details.

There is an issue in deciding how to handle the special identifiers for the basic classes (Object, Int,
Bool, String), SELF TYPE, and self. However, this issue doesn’t actually come up until later phases of
the compiler—the scanner should treat the special identifiers exactly like any other identifier.

Do not test whether integer literals fit within the representation specified in the Cool manual—simply
create a Symbol with the entire literal’s text as its contents, regardless of its length.

4.3 Strings

Your scanner should convert escape characters in string constants to their correct values. For example,
if the programmer types these eight characters:

" a b \ n c d "

your scanner would return the token STR CONST whose semantic value is these 5 characters:

a b \n c d

where \n represents the literal ASCII character for newline.

Following specification on page 15 of the Cool manual, you must return an error for a string containing
the literal null character. However, the sequence of two characters

\ 0

is allowed but should be converted to the one character (the digit zero, ASCII value 48)

0 .

4.4 Other Notes

Your scanner should maintain the variable curr lineno that indicates which line in the source text is
currently being scanned. This feature will aid the parser in printing useful error messages.

You should ignore the token LET STMT. It is used only by the parser (PA2). Finally, note that
if the lexical specification is incomplete (some input has no regular expression that matches), then the
scanners generated by both flex do undesirable things. Make sure your specification is complete.

Spring 2021 page 5 of 7



CS 143 Compilers

5 Implementation Notes

• Each call on the scanner returns the next token and lexeme from the input. The value returned by
the function cool yylex is an integer code representing the syntactic category (e.g., integer literal,
semicolon, if keyword, etc.). The codes for all tokens are defined in the file cool-parse.h. The second
component, the semantic value or lexeme, is placed in the global union cool yylval, which is of
type YYSTYPE. The type YYSTYPE is also defined in cool-parse.h. The tokens for single character
symbols (e.g., “;” and “,”) are represented just by the integer (ASCII) value of the character itself.
All of the single character tokens are listed in the grammar for Cool in the Cool manual.

• For class identifiers, object identifiers, integers, and strings, the semantic value should be a Symbol
stored in the field cool yylval.symbol. For boolean constants, the semantic value is stored in the
field cool yylval.boolean. Except for errors (see below), the lexemes for the other tokens do not
carry any interesting information.

• We provide you with a string table implementation, which is discussed in detail in A Tour of the Cool
Support Code and in documentation in the code. For the moment, you only need to know that the
type of string table entries is Symbol.

• When a lexical error is encountered, the routine cool yylex should return the token ERROR.
The semantic value is the string representing the error message, which is stored in the field
cool yylval.error msg (note that this field is an ordinary string, not a symbol). See the previous
section for information on what to put in error messages.

6 Testing the Scanner

There are at least two ways that you can test your scanner. The first way is to generate sample inputs
and run them using lexer, which prints out the line number and the lexeme of every token recognized
by your scanner. For example, after you run make lexer, you can run ./lexer test.cl to run your
scanner on the input file test.cl. You can compare the output here to the output of the sample lexer,
found at /usr/class/cs143/bin/lexer. The other way, when you think your scanner is working, is to
try running mycoolc to invoke your lexer together with all other compiler phases (which we provide).
This will be a complete Cool compiler that you can try on any test programs.

7 What to Turn In

Before submitting, please ensure you have done the following:

• It is your responsibility to ensure that the final version you submit does not have any debug print
statements and that your lexical specification is complete (every possible input has some regular
expression that matches)

• Please remove the instructions section in the README. This section is the one that starts at the
beginning, and runs till the following line (inclusive of this line)

---8<------8<------8<------8<---cut here---8<------8<------8<------8<---

Spring 2021 page 6 of 7



CS 143 Compilers

This section of the README is only to provide you additional guidance about which files you need
to edit, and you must remove it before actually submitting the assignment

• Ensure that you have edited the README so that the first line includes your username in the following
format:

user: <your_sunet_id>

If you are working in a group of two, there should be TWO separate user lines- the submission script
will fail if both the SUNet IDs are contained on the same line. In particular, if two students with
SUNet IDs abcdef and bcdefg work together, their README should mention the SUNet IDs in the
following way:

user: abcdef

user: bcdefg

The important thing to note is that the following will NOT work:

user: abcdef, bcdefg

Your SUNet ID is the name you use to log in to the myth machines (not your 8-digit student ID
number), and can be queried with the whoami command.

• Once the README is ready, run the following from your project directory:

make submit

This will package up most of the files in your project directory (it will ignore things like core dumps
and Emacs backup files) and copy them into the submission folder, along with a time stamp.

The last version of the assignment you submit will be the one graded. Each submission overwrites the
previous one. However, we reserve the right to retain older submissions for reference in case of any
disputes. Remember that you have three late days to use for the entire quarter; please refer to the
late policy page on the course website for details.

The burden of convincing us that you understand the material is on you. Obtuse code will have a
negative effect on your grade, so take the extra time to make your code readable.

• Important: We will only accept assignments turned in via the submit script. Please test-submit your
assignment at least 24 hours before the deadline to be sure that the script is working for you, even if
you are not finished. It is your responsibility to check for problems ahead of time.

Spring 2021 page 7 of 7


