Announcements

- PA1 & WA1
 - Due today at midnight

- PA2 & WA2
 - Assigned today

Outline

- Extensions of CFG for parsing
 - Precedence declarations
 - Error handling
 - Semantic actions

- Constructing a parse tree

- Recursive descent

Error Handling

- Purpose of the compiler is
 - To detect non-valid programs
 - To translate the valid ones

- Many kinds of possible errors (e.g. in C)

<table>
<thead>
<tr>
<th>Error kind</th>
<th>Example</th>
<th>Detected by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexical</td>
<td>... $...</td>
<td>Lexer</td>
</tr>
<tr>
<td>Syntax</td>
<td>... x *% ...</td>
<td>Parser</td>
</tr>
<tr>
<td>Semantic</td>
<td>... int x; y = x(3); ...</td>
<td>Type checker</td>
</tr>
<tr>
<td>Correctness</td>
<td>your favorite program</td>
<td>Tester/User</td>
</tr>
</tbody>
</table>
Syntax Error Handling

• Error handler should
 - Report errors accurately and clearly
 - Recover from an error quickly
 - Not slow down compilation of valid code

• Good error handling is not easy to achieve

Approaches to Syntax Error Recovery

• From simple to complex
 - Panic mode
 - Error productions
 - Automatic local or global correction

• Not all are supported by all parser generators

Error Recovery: Panic Mode

• Simplest, most popular method

• When an error is detected:
 - Discard tokens until one with a clear role is found
 - Continue from there

• Such tokens are called synchronizing tokens
 - Typically the statement or expression terminators

Syntax Error Recovery: Panic Mode (Cont.)

• Consider the erroneous expression
 \[(1 + + 2) + 3\]

• Panic-mode recovery:
 - Skip ahead to next integer and then continue

• Bison: use the special terminal `error` to describe how much input to skip
 \[E \rightarrow \text{int} | E + E | (E) | \text{error int} | (\text{error})\]
Syntax Error Recovery: Error Productions

- Idea: specify in the grammar known common mistakes
- Essentially promotes common errors to alternative syntax
- Example:
 - Write 5 \times instead of 5 \times x
 - Add the production \texttt{E \rightarrow \ldots | E E}
- Disadvantage
 - Complicates the grammar

Error Recovery: Local and Global Correction

- Idea: find a correct “nearby” program
 - Try token insertions and deletions
 - Exhaustive search
- Disadvantages:
 - Hard to implement
 - Slows down parsing of correct programs
 - “Nearby” is not necessarily “the intended” program
 - Not all tools support it

Syntax Error Recovery: Past and Present

- Past
 - Slow recompilation cycle (even once a day)
 - Find as many errors in one cycle as possible
 - Researchers could not let go of the topic
- Present
 - Quick recompilation cycle
 - Users tend to correct one error/cycle
 - Complex error recovery is less compelling
 - Panic-mode seems enough

Abstract Syntax Trees

- So far a parser traces the derivation of a sequence of tokens
- The rest of the compiler needs a structural representation of the program
- Abstract syntax trees
 - Like parse trees but ignore some details
 - Abbreviated as AST
Abstract Syntax Tree (Cont.)

- Consider the grammar
 \[E \rightarrow \text{int} | (E) | E + E \]
- And the string
 \[5 + (2 + 3) \]
- After lexical analysis (a list of tokens)
 \[\text{int} \ '5' \ '+' \ '(' \text{int} \ '2' \ '+' \text{int} \ '3' \ ')' \]
- During parsing we build a parse tree ...

Example of Parse Tree

- Traces the operation of the parser
- Does capture the nesting structure
- But too much info
 - Parentheses
 - Single-successor nodes

Example of Abstract Syntax Tree

- Also captures the nesting structure
- But abstracts from the concrete syntax
 - more compact and easier to use
- An important data structure in a compiler

Semantic Actions

- This is what we’ll use to construct ASTs
- Each grammar symbol may have attributes
 - For terminal symbols (lexical tokens) attributes can be calculated by the lexer
- Each production may have an action
 - Written as: \[X \rightarrow Y_1 \ldots Y_n \{ \text{action} \} \]
 - That can refer to or compute symbol attributes
Semantic Actions: An Example

- Consider the grammar:
 \[E \rightarrow \text{int} \mid E + E \mid (E) \]

- For each symbol \(X \) define an attribute \(X.val \):
 - For terminals, \(X.val \) is the associated lexeme
 - For non-terminals, \(X.val \) is the expression's value (and is computed from values of subexpressions)

- We annotate the grammar with actions:
 \[
 \begin{align*}
 E \rightarrow \text{int} & \quad \{ E.val = \text{int}.val \} \\
 E \rightarrow E_1 + E_2 & \quad \{ E.val = E_1.val + E_2.val \} \\
 E \rightarrow (E) & \quad \{ E.val = E_1.val \}
 \end{align*}
 \]

Semantic Actions: An Example (Cont.)

- String: \(5 + (2 + 3) \)
- Tokens: \(\text{int} \ 5 \ \text{+} \ \text{int} \ 2 \ \text{+} \ \text{int} \ 3 \)\)

<table>
<thead>
<tr>
<th>Productions</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E \rightarrow E_1 + E_2)</td>
<td>(E.val = E_1.val + E_2.val)</td>
</tr>
<tr>
<td>(E \rightarrow \text{int})</td>
<td>(E.val = \text{int}.val = 5)</td>
</tr>
<tr>
<td>(E \rightarrow (E))</td>
<td>(E.val = E_1.val)</td>
</tr>
<tr>
<td>(E \rightarrow E_4 + E_5)</td>
<td>(E.val = E_4.val + E_5.val)</td>
</tr>
<tr>
<td>(E \rightarrow \text{int})</td>
<td>(E_4.val = \text{int}_2.val = 2)</td>
</tr>
<tr>
<td>(E \rightarrow \text{int})</td>
<td>(E_5.val = \text{int}_3.val = 3)</td>
</tr>
</tbody>
</table>

Semantic Actions: Notes

- Semantic actions specify a system of equations
- Declarative Style
 - Order of resolution is not specified
 - The parser figures it out
- Imperative Style
 - The order of evaluation is fixed
 - Important if the actions manipulate global state

Semantic Actions: Notes

- We'll explore actions as pure equations
 - Style 1
 - But note bison has a fixed order of evaluation for actions
- Example:
 \(E_3.val = E_4.val + E_5.val \)
 - Must compute \(E_4.val \) and \(E_5.val \) before \(E_3.val \)
 - We say that \(E_3.val \) depends on \(E_4.val \) and \(E_5.val \)
Each node labeled E has one slot for the `val` attribute.

Note the dependencies:

- An attribute must be computed after all its successors in the dependency graph have been computed.
 - In previous example attributes can be computed bottom-up.

- Such an order exists when there are no cycles.
 - Cyclically defined attributes are not legal.

Semantic Actions: Notes (Cont.)

- **Synthesized attributes**
 - Calculated from attributes of descendents in the parse tree.
 - $E.val$ is a synthesized attribute.
 - Can always be calculated in a bottom-up order.

- Grammars with only synthesized attributes are called S-attributed grammars.
 - Most common case.
Inherited Attributes

- Another kind of attribute
- Calculated from attributes of parent and/or siblings in the parse tree
- Example: a line calculator

A Line Calculator

- Each line contains an expression
 \[E \rightarrow \text{int} \mid E + E \]
- Each line is terminated with the = sign
 \[L \rightarrow E = \mid + E = \]
- In second form the value of previous line is used as starting value
- A program is a sequence of lines
 \[P \rightarrow \varepsilon \mid P \ L \]

Attributes for the Line Calculator

- Each \(E \) has a synthesized attribute \(\text{val} \)
 - Calculated as before
- Each \(L \) has an attribute \(\text{val} \)
 \[L \rightarrow E = \quad \{ L.\text{val} = E.\text{val} \} \]
 \[\mid + E = \quad \{ L.\text{val} = E.\text{val} + L.\text{prev} \} \]
- We need the value of the previous line
- We use an inherited attribute \(L.\text{prev} \)

Attributes for the Line Calculator (Cont.)

- Each \(P \) has a synthesized attribute \(\text{val} \)
 - The value of its last line
 \[P \rightarrow \varepsilon \quad \{ P.\text{val} = 0 \} \]
 \[\mid P_1 L \quad \{ P.\text{val} = L.\text{val}; \quad L.\text{prev} = P_1.\text{val} \} \]
 - Each \(L \) has an inherited attribute \(\text{prev} \)
 - \(L.\text{prev} \) is inherited from sibling \(P_1.\text{val} \)
- Example ...
Example of Inherited Attributes

- val synthesized
- prev inherited
- All can be computed in depth-first order

Semantic Actions: Notes (Cont.)

- Semantic actions can be used to build ASTs
- And many other things as well
 - Also used for type checking, code generation, ...
- Process is called syntax-directed translation
 - Substantial generalization over CFGs

Constructing An AST

- We first define the AST data type
 - Supplied by us for the project
- Consider an abstract tree type with two constructors:

 mkleaf(n) = \[\begin{array}{c} n \end{array} \]

 mkplus(,) = \[\begin{array}{c} \text{PLUS} \end{array} \]
Constructing a Parse Tree

- We define a synthesized attribute \(\text{ast} \)
 - Values of \(\text{ast} \) values are ASTs
 - We assume that \(\text{int.lexval} \) is the value of the integer lexeme
 - Computed using semantic actions

\[
\begin{align*}
E & \rightarrow \text{int} \\
 & \mid E \cdot E_2 \\
 & \mid (E_1) \\
\end{align*}
\]

\[
E.\text{ast} = \text{mkleaf}(\text{int.lexval}) \\
E.\text{ast} = \text{mkplus}(E_1.\text{ast}, E_2.\text{ast}) \\
E.\text{ast} = E_1.\text{ast}
\]

Parse Tree Example

- Consider the string \(\text{int}_5 \ ' + ' (\text{int}_2 \ ' + ' \text{int}_3) \)’
- A bottom-up evaluation of the \(\text{ast} \) attribute:
 \[
 E.\text{ast} = \text{mkplus}(\text{mkleaf}(5), \text{mkplus}(\text{mkleaf}(2), \text{mkleaf}(3)))
 \]

Summary

- We can specify language syntax using CFG
- A parser will answer whether \(s \in L(G) \)
 - ... and will build a parse tree
 - ... which we convert to an AST
 - ... and pass on to the rest of the compiler

Intro to Top-Down Parsing: The Idea

- The parse tree is constructed
 - From the top
 - From left to right
- Terminals are seen in order of appearance in the token stream:
 \[
 t_2 \ t_5 \ t_6 \ t_8 \ t_9
 \]
Recursive Descent Parsing

- Consider the grammar
 \[E \rightarrow T \mid T + E \]
 \[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

- Token stream is: (int5)

- Start with top-level non-terminal E
 - Try the rules for E in order

Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

E
 \[\rightarrow \text{int} \]
 \[\rightarrow (E) \]

E
 \[\rightarrow T \]

E
 \[\rightarrow T \]

Mismatch: int is not (!
Backtrack …
Recursive Descent Parsing

E → T | T + E
T → int | int * T | (E)

E
→ T
(int 5)
↑

Recursive Descent Parsing

E → T | T + E
T → int | int * T | (E)

E
→ T
int *
T
Mismatch: int is not (!
Backtrack ...

E
→ T
(int 5)
↑

Recursive Descent Parsing

E → T | T + E
T → int | int * T | (E)

E
→ T
(int 5)
↑

Recursive Descent Parsing

E → T | T + E
T → int | int * T | (E)

E
→ T
(E)
Match! Advance input.
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} * T \mid (E) \]

\[
\begin{array}{c}
E \\
\downarrow \\
T \\
\downarrow \\
(E) \\
\end{array}
\]

\[
\begin{array}{c}
(\text{int}_3) \\
\uparrow \\
\text{int} \\
\end{array}
\]

Match! Advance input.

Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} * T \mid (E) \]

\[
\begin{array}{c}
E \\
\downarrow \\
T \\
\downarrow \\
(E) \\
\end{array}
\]

\[
\begin{array}{c}
(\text{int}_3) \\
\uparrow \\
\text{int} \\
\end{array}
\]
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

ARecursive Descent Parser. Preliminaries

• Let TOKEN be the type of tokens
 - Special tokens INT, OPEN, CLOSE, PLUS, TIMES

• Let the global next point to the next token

A (Limited) Recursive Descent Parser (2)

• Define boolean functions that check the token string for a match of
 - A given token terminal
 \[\text{bool term}(\text{TOKEN tok}) \{ \text{return *next++ == tok; } \} \]
 - The nth production of S:
 \[\text{bool S}_n() \{ \ldots \} \]
 - Try all productions of S:
 \[\text{bool S}() \{ \ldots \} \]

A (Limited) Recursive Descent Parser (3)

• For production \(E \rightarrow T \)
 \[\text{bool E}_1() \{ \text{return T(); } \} \]

• For production \(E \rightarrow T + E \)
 \[\text{bool E}_2() \{ \text{return T()} \&\& \text{term(PLUS)} \&\& E(); } \}

• For all productions of E (with backtracking)
 \[\text{bool E}() \{ \]
 \[\text{TOKEN *} \text{save} = \text{next}; \]
 \[\text{return (next = save, E}_1()); \]
 \[\text{|| (next = save, E}_2()); \}
 \[\} \]
A (Limited) Recursive Descent Parser (4)

- Functions for non-terminal T
  ```cpp
  bool T_1() { return term(INT); }
  bool T_2() { return term(INT) && term(TIMES) && T(); }
  bool T_3() { return term(OPEN) && E() && term(CLOSE); }
  ```

  ```cpp
  bool T() {
      TOKEN *save = next;
      return    (next = save, T_1())
    || (next = save,  T_2())
    || (next = save,  T_3()); }
  ```

Recursive Descent Parsing. Notes.

- To start the parser
 - Initialize `next` to point to first token
 - Invoke `E()`

- Notice how this simulates the example parse

- Easy to implement by hand
 - But not completely general
 - Cannot backtrack once a production is successful
 - Works for grammars where at most one production can succeed for a non-terminal

Example

```cpp
E → T | T + E
T → int | int * T | ( E )
bool term(TOKEN tok) { return *next++ == tok; }
bool E_1() { return T(); }
bool E_2() { return T() && term(PLUS) && E(); }
bool E() {TOKEN *save = next; return     (next = save, E_1())
  || (next = save,  E_2());   }
bool T_1() { return term(INT); }
bool T_2() { return term(INT) && term(TIMES) && T(); }
bool T_3() { return term(OPEN) && E() && term(CLOSE); }
bool T() { TOKEN *save = next; return    (next = save, T_1())
  || (next = save,  T_2())
  || (next = save,  T_3()); }
```

When Recursive Descent Does Not Work

- Consider a production $S \rightarrow S a$
  ```cpp
  bool S_a() { return S() && term(a); }
  bool S() { return S_a(); }
  ```

 - $S()$ goes into an infinite loop

- A left-recursive grammar has a non-terminal S
  ```cpp
  S → Sα
  ```

 for some $α$

- Recursive descent does not work in such cases
Elimination of Left Recursion

- Consider the left-recursive grammar
 \[S \rightarrow S \alpha | \beta \]
- \(S \) generates all strings starting with \(\beta \) and followed by a number of \(\alpha \)
- Can rewrite using right-recursion
 \[
 S \rightarrow \beta S' \\
 S' \rightarrow \alpha S' | \epsilon
 \]

More Elimination of Left-Recursion

- In general
 \[S \rightarrow S \alpha_1 | \ldots | S \alpha_n | \beta_1 | \ldots | \beta_m \]
- All strings derived from \(S \) start with one of \(\beta_1, \ldots, \beta_m \) and continue with several instances of \(\alpha_1, \ldots, \alpha_n \)
- Rewrite as
 \[
 S \rightarrow \beta_1 S' | \ldots | \beta_m S' \\
 S' \rightarrow \alpha_1 S' | \ldots | \alpha_n S' | \epsilon
 \]

General Left Recursion

- The grammar
 \[S \rightarrow A \alpha | \delta \]
 \[A \rightarrow S \beta \]
 is also left-recursive because
 \[S \rightarrow \ast S \beta \alpha \]
- This left-recursion can also be eliminated
- See Dragon Book for general algorithm
 - Section 4.3

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar