Error Handling
Syntax-Directed Translation
Recursive Descent Parsing

CS143
Lecture 6

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications
Announcements

• PA1 & WA1
 – Due today at midnight

• PA2 & WA2
 – Assigned today
Outline

• Extensions of CFG for parsing
 – Precedence declarations
 – Error handling
 – Semantic actions

• Constructing an abstract syntax tree (AST)

• Recursive descent
Error Handling

• Purpose of the compiler is
 – To detect non-valid programs
 – To translate the valid ones

• Many kinds of possible errors

<table>
<thead>
<tr>
<th>Error kind</th>
<th>Example (C)</th>
<th>Detected by …</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexical</td>
<td>… $ …</td>
<td>Lexer</td>
</tr>
<tr>
<td>Syntax</td>
<td>… x *% …</td>
<td>Parser</td>
</tr>
<tr>
<td>Semantic</td>
<td>… int x; y = x(3); …</td>
<td>Type checker</td>
</tr>
<tr>
<td>Correctness</td>
<td>your favorite program</td>
<td>Tester/User</td>
</tr>
</tbody>
</table>
Syntax Error Handling

• Error handler should
 – Report errors accurately and clearly
 – Recover from an error quickly
 – Not slow down compilation of valid code

• Good error handling is not easy to achieve
Approaches to Syntax Error Recovery

• From simple to complex
 – Panic mode
 – Error productions
 – Automatic local or global correction

• Not all are supported by all parser generators
Error Recovery: Panic Mode

• Simplest, most popular method

• When an error is detected:
 – Discard tokens until one with a clear role is found
 – Continue from there

• Such tokens are called synchronizing tokens
 – Typically the statement or expression terminators
Syntax Error Recovery: Panic Mode (Cont.)

• Consider the erroneous expression
 \((1 + + 2) + 3\)

• Panic-mode recovery:
 – Skip ahead to next integer and then continue

• Bison: use the special terminal `error` to describe how much input to skip
 \[E \rightarrow \text{int} \mid E + E \mid (E) \mid \text{error int} \mid (\text{error}) \]
Syntax Error Recovery: Error Productions

• Idea: specify in the grammar known common mistakes

• Essentially promotes common errors to alternative syntax

• Example:
 – Write $5 \times$ instead of $5 \times x$
 – Add the production $E \rightarrow \ldots \mid E \ E$

• Disadvantage
 – Complicates the grammar
Error Recovery: Local and Global Correction

• Idea: find a correct “nearby” program
 – Try token insertions and deletions
 – Exhaustive search

• Disadvantages:
 – Hard to implement
 – Slows down parsing of correct programs
 – “Nearby” is not necessarily “the intended” program
 – Not all tools support it
Syntax Error Recovery: Past and Present

• Past
 – Slow recompilation cycle (even once a day)
 – Find as many errors in one cycle as possible
 – Researchers could not let go of the topic

• Present
 – Quick recompilation cycle
 – Users tend to correct one error/cycle
 – Complex error recovery is less compelling
 – Panic-mode seems enough
Abstract Syntax Trees

- So far a parser traces the derivation of a sequence of tokens

- The rest of the compiler needs a structural representation of the program

- Abstract syntax trees
 - Like parse trees but ignore some details
 - Abbreviated as AST
Abstract Syntax Tree (Cont.)

• Consider the grammar
 \[E \rightarrow \text{int} \mid (\ E \) \mid E + E \]

• And the string
 \[5 + (2 + 3) \]

• After lexical analysis (a list of tokens)
 \[\text{int}_5 \ '+' \ (' \ \text{int}_2 \ '+' \ \text{int}_3 \ ') \]

• During parsing we build a parse tree …
Example of Parse Tree

- Traces the operation of the parser
- Does capture the nesting structure
- But too much info
 - Parentheses
 - Single-successor nodes
Example of Abstract Syntax Tree

- Also captures the nesting structure
- But abstracts from the concrete syntax
 => more compact and easier to use
- An important data structure in a compiler
CFG: Semantic Actions

• This is what we’ll use to construct ASTs

• Each grammar symbol may have attributes
 – For terminal symbols (lexical tokens) attributes can be calculated by the lexer

• Each production may have an action
 – Written as: \(X \rightarrow Y_1 \ldots Y_n \{ \text{action} \} \)
 – That can refer to or compute symbol attributes
Semantic Actions: An Example

• Consider the grammar
 \[E \rightarrow \text{int} | E + E | (E) \]

• For each symbol \(X \) define an attribute \(X.\text{val} \)
 – For terminals, \(\text{val} \) is the associated lexeme
 – For non-terminals, \(\text{val} \) is the expression’s value (and is computed from values of subexpressions)

• We annotate the grammar with actions:
 \[E \rightarrow \text{int} \quad \{ E.\text{val} = \text{int}.\text{val} \} \]
 \[\mid E_1 + E_2 \quad \{ E.\text{val} = E_1.\text{val} + E_2.\text{val} \} \]
 \[\mid (E_1) \quad \{ E.\text{val} = E_1.\text{val} \} \]
Semantic Actions: An Example (Cont.)

- **String**: $5 + (2 + 3)$
- **Tokens**: `int5` `+` `(` `int2` `+` `int3` `)`

Productions

- $E \rightarrow E_1 + E_2$
- $E_1 \rightarrow \text{int}_5$
- $E_2 \rightarrow (E_3)$
- $E_3 \rightarrow E_4 + E_5$
- $E_4 \rightarrow \text{int}_2$
- $E_5 \rightarrow \text{int}_3$

Equations

- $E\.val = E_1\.val + E_2\.val$
- $E_1\.val = \text{int}_5\.val = 5$
- $E_2\.val = E_3\.val$
- $E_3\.val = E_4\.val + E_5\.val$
- $E_4\.val = \text{int}_2\.val = 2$
- $E_5\.val = \text{int}_3\.val = 3$
Semantic Actions: Notes

• Semantic actions specify a system of equations

• Declarative Style
 – Order of resolution is not specified
 – The parser figures it out

• Imperative Style
 – The order of evaluation is fixed
 – Important if the actions manipulate global state
Semantic Actions: Notes

• We’ll explore actions as pure equations
 – Style 1
 – But note bison has a fixed order of evaluation for actions

• Example:
 \[E_3.val = E_4.val + E_5.val \]
 – Must compute \(E_4.val \) and \(E_5.val \) before \(E_3.val \)
 – We say that \(E_3.val \) depends on \(E_4.val \) and \(E_5.val \)
Each node labeled E has one slot for the `val` attribute.

Note the dependencies.
Evaluating Attributes

• An attribute must be computed after all its successors in the dependency graph have been computed
 – In previous example attributes can be computed bottom-up

• Such an order exists when there are no cycles
 – Cyclically defined attributes are not legal
Dependency Graph

\[
E = E_1 + E_2 + E_3 + E_4 + E_5
\]

\[
E_1 = int_5 \cdot 5
\]

\[
E_2 = int_5 \cdot 5 + E_3
\]

\[
E_3 = int_5 \cdot 5 + E_4 + E_5
\]

\[
E_4 = int_2 \cdot 2
\]

\[
E_5 = int_3 \cdot 3
\]
Semantic Actions: Notes (Cont.)

• **Synthesized** attributes
 – Calculated from attributes of descendents in the parse tree
 – $E.val$ is a synthesized attribute
 – Can always be calculated in a bottom-up order

• Grammars with only synthesized attributes are called **S-attributed** grammars
 – Most common case
Inherited Attributes

• Another kind of attribute

• Calculated from attributes of parent and/or siblings in the parse tree

• Example: a line calculator
A Line Calculator

- Each line contains an expression
 \[E \rightarrow \text{int} \mid E + E \]
- Each line is terminated with the \(= \) sign
 \[L \rightarrow E = \mid + E = \]
- In second form the value of previous line is used as starting value
- A program is a sequence of lines
 \[P \rightarrow \varepsilon \mid P \ L \]
Attributes for the Line Calculator

- Each E has a synthesized attribute val
 - Calculated as before
- Each L has an attribute val
 \[
 L \to E = \{ L.val = E.val \} \\
 l + E = \{ L.val = E.val + L.prev \}
 \]

- We need the value of the previous line
- We use an inherited attribute $L.prev$
Attributes for the Line Calculator (Cont.)

• Each P has a synthesized attribute val
 – The value of its last line
 $P \rightarrow \epsilon$ \hspace{1cm} \{ $P.val = 0$ \}
 \mid $P_1 L$ \hspace{1cm} \{ $L.prev = P_1.val;$
 \hspace{2cm} $P.val = L.val$ \}
 – Each L has an inherited attribute $prev$
 – $L.prev$ is inherited from sibling $P_1.val$

• Example …
Example of Inherited Attributes

- **val** synthesized
- **prev** inherited
- All can be computed in bottom-up order

\[P \varepsilon E_3 + E_4 + E_5 = E_4 + int_2 2 + int_3 3 \]
Example of Inherited Attributes

- val synthesized
- prev inherited
- All can be computed in depth-first order

\[E_4 + E_3 = E_5 \]

\[E_3 = 5 \]

\[E_4 = 2 \]

\[E_5 = 3 \]
Semantic Actions: Notes (Cont.)

• Semantic actions can be used to build ASTs

• And many other things as well
 – Also used for type checking, code generation, computation, …

• Process is called syntax-directed translation
 – Substantial generalization over CFGs
Constructing an AST

- We first define the AST data type
 - Supplied by us for the project
- Consider an abstract tree type with two constructors:

\[
\text{mkleaf}(n) = \begin{array}{c}
\hline
n \\
\end{array}
\]

\[
\text{mkplus}(T_1, T_2) = \begin{array}{c}
\hline
\text{PLUS} \\
\end{array}
\]

\[
\begin{array}{c}
\hline
T_1 \\
\end{array}
\begin{array}{c}
\hline
T_2 \\
\end{array}
\]

\[
\begin{array}{c}
\hline
T_1 \\
\end{array}
\begin{array}{c}
\hline
T_2 \\
\end{array}
\]

Constructing an AST

- We define a synthesized attribute `ast`
 - Values of `ast` values are ASTs
 - We assume that `int.lexval` is the value of the integer lexeme
 - Computed using semantic actions

\[
\begin{align*}
E & \rightarrow \text{int} \quad \quad E.\text{ast} = \text{mkleaf}(\text{int.lexval}) \\
\mid E_1 + E_2 & \quad E.\text{ast} = \text{mkplus}(E_1.\text{ast}, E_2.\text{ast}) \\
\mid (E_1) & \quad E.\text{ast} = E_1.\text{ast}
\end{align*}
\]
Abstract Syntax Tree Example

- Consider the string \texttt{int}_5 \texttt{+} \texttt{(} \texttt{int}_2 \texttt{+} \texttt{int}_3 \texttt{)}
- A bottom-up evaluation of the \texttt{ast} attribute:
 \[
 E.\texttt{ast} = \texttt{mkplus(}\texttt{mkleaf(5)},
 \texttt{mkplus(}\texttt{mkleaf(2)}, \texttt{mkleaf(3)}))
 \]
Summary

- We can specify language syntax using CFG

- A parser will answer whether $s \in L(G)$
 - ... and will trace a parse tree
 - ... in whose productions we build an AST
 - ... that we pass on to the rest of the compiler
Intro to Top-Down Parsing: The Idea

- The parse tree is constructed
 - From the top
 - From left to right

- Terminals are seen in order of appearance in the token stream:
 ty t5 t6 t8 t9

```
          1
        /   \
       /     \
      2      3
    /   \    /   \
   /     \  /     \ 
  4      7  t5  t6  t8
```
Recursive Descent Parsing

• Consider the grammar

 \[E \rightarrow T \mid T + E \]
 \[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

• Token stream is: \((\text{int}_5)\)

• Start with top-level non-terminal \(E\)

 – Try the rules for \(E\) in order
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

(\text{int}_5)
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]

\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

\((\text{int}_5)\)

\(\uparrow\)
Recursive Descent Parsing

E → T | T + E
T → int | int * T | (E)

Mismatch: int is not (!
Backtrack …

E
T
int

(int₅)
↑
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]

Mismatch: int is not (!
Backtrack …
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} * T \mid (E) \]

(int\textsubscript{5})

↑
Recursive Descent Parsing

\[
E \rightarrow T \mid T + E \\
T \rightarrow \text{int} \mid \text{int} * T \mid (E)
\]

(E)

Match! Advance input.

(int₅)
Recursive Descent Parsing

\[
E \rightarrow T \mid T + E \\
T \rightarrow \text{int} \mid \text{int} \ast T \mid (E)
\]

\[
\begin{array}{c}
E \\
\downarrow \\
T \\
\downarrow \\
(\text{int}_5)
\end{array}
\]
Recursive Descent Parsing

\[
E \rightarrow T | T + E \\
T \rightarrow \text{int} | \text{int} \ast T | (E)
\]
Recursive Descent Parsing

\[E \rightarrow T \mid T + E \]
\[T \rightarrow \text{int} \mid \text{int} \times T \mid (E) \]

Match! Advance input.
Recursive Descent Parsing

\[E \rightarrow T | T + E \]
\[T \rightarrow \text{int} \mid \text{int} \ast T \mid (E) \]
Recursive Descent Parsing

\[
E \rightarrow T \mid T + E \\
T \rightarrow \text{int} \mid \text{int} \ast T \mid (E)
\]

\[
\text{int}_5
\]

End of input, accept.
A Recursive Descent Parser. Preliminaries

• Let TOKEN be the type of tokens
 – Special tokens INT, OPEN, CLOSE, PLUS, TIMES

• Let the global next point to the next token
A (Limited) Recursive Descent Parser (2)

- Define boolean functions that check the token string for a match of
 - A given token terminal
    ```cpp
    bool term(TOKEN tok) { return *next++ == tok; }
    ```
 - The nth production of S:
    ```cpp
    bool S_n() { … }
    ```
 - Try all productions of S:
    ```cpp
    bool S() { … }
    ```
A (Limited) Recursive Descent Parser (3)

- For production $E \rightarrow T$
  ```
  bool $E_1()$ { return $T()$; }
  ```

- For production $E \rightarrow T + E$
  ```
  bool $E_2()$ { return $T()$ && term(PLUS) && $E()$; }
  ```

- For all productions of E (with backtracking)
  ```
  bool $E()$ {
    TOKEN *save = next;
    return (next = save, $E_1()$) || (next = save, $E_2()$);
  }
  ```
A (Limited) Recursive Descent Parser (4)

- Functions for non-terminal T

```cpp
bool T_1() { return term(INT); }
bool T_2() { return term(INT) && term(TIMES) && T(); }
bool T_3() { return term(OPN) && E() && term(CLOSE); }

bool T() {
    TOKEN *save = next;
    return (next = save, T_1())
    || (next = save, T_2())
    || (next = save, T_3()); }
```
Recursive Descent Parsing. Notes.

- To start the parser
 - Initialize `next` to point to first token
 - Invoke `E()`

- Notice how this simulates the example parse

- Easy to implement by hand
 - But not completely general
 - Cannot backtrack once a production is successful
 - Works for grammars where at most one production can succeed for a non-terminal
Example

\[
\begin{align*}
E & \rightarrow T \mid T + E & (\text{int}) \\
T & \rightarrow \text{int} \mid \text{int} \ast T \mid (E)
\end{align*}
\]

bool term(TOKEN tok) { return *next++ == tok; }

bool E_1() { return T(); }
bool E_2() { return T() && term(PLUS) && E(); }

bool E() { TOKEN *save = next; return (next = save, E_1())
\quad \| (next = save, E_2()); }

bool T_1() { return term(INT); }
bool T_2() { return term(INT) && term(TIMES) && T(); }
bool T_3() { return term(OPEN) && E() && term(CLOSE); }

bool T() { TOKEN *save = next; return (next = save, T_1())
\quad \| (next = save, T_2())
\quad \| (next = save, T_3()); }
When Recursive Descent Does Not Work

- Consider a production $S \rightarrow S \alpha$

  ```
  bool $S_1()$ { return $S()$ && term($a$); }
  
  bool $S()$ { return $S_1()$; }
  ```

- $S()$ goes into an infinite loop

- A left-recursive grammar has a non-terminal S

 $S \rightarrow^+ S\alpha$ for some α

- Recursive descent does not work in such cases
Elimination of Left Recursion

• Consider the left-recursive grammar

\[S \rightarrow S \alpha \mid \beta \]

• \(S \) generates all strings starting with a \(\beta \) and followed by a number of \(\alpha \)

• Can rewrite using right-recursion

\[
S \rightarrow \beta S' \\
S' \rightarrow \alpha S' \mid \varepsilon
\]
More Elimination of Left-Recursion

• In general

\[S \rightarrow S \beta_1 \mid \ldots \mid S \beta_m \]

• All strings derived from \(S \) start with one of \(\beta_1, \ldots, \beta_m \) and continue with several instances of \(\alpha_1, \ldots, \alpha_n \)

• Rewrite as

\[S \rightarrow \beta_1 S' \mid \ldots \mid \beta_m S' \]

\[S' \rightarrow \alpha_1 S' \mid \ldots \mid \alpha_n S' \mid \epsilon \]
General Left Recursion

• The grammar
 \[S \rightarrow A \alpha | \delta \]
 \[A \rightarrow S \beta \]
 is also left-recursive because
 \[S \rightarrow^+ S \beta \alpha \]

• This left-recursion can also be eliminated

• See Dragon Book for general algorithm
 – Section 4.3
Summary of Recursive Descent

• Simple and general parsing strategy
 – Left-recursion must be eliminated first
 – … but that can be done automatically

• Historically unpopular because of backtracking
 – Was thought to be too inefficient
 – In practice, fast and simple on modern machines

• In practice, backtracking is eliminated by restricting the grammar