Bottom-Up Parsing II

Lecture 8

Review: Shift-Reduce Parsing

Bottom-up parsing uses two actions:

* **Shift**

 \[ABC|xyz \Rightarrow ABC|xyz \]

* **Reduce**

 \[Cb|lijk \Rightarrow CbA|lijk \]

Recall: The Stack

- Left string can be implemented by a stack
 - Top of the stack is the `|`
- Shift pushes a terminal on the stack
- Reduce
 - pops 0 or more symbols off of the stack
 - pushes a non-terminal on the stack
 - production lhs

Key Issue

- How do we decide when to shift or reduce?
- Example grammar:

 - \[E \rightarrow T + E | T \]
 - \[T \rightarrow \text{int} \ast T | \text{int} | (E) \]
- Consider step \[\text{int} | \ast \text{int} + \text{int} \]
 - We could reduce by \[T \rightarrow \text{int} \]
 giving \[T | \ast \text{int} + \text{int} \]
 - A fatal mistake!
 - No way to reduce to the start symbol \[E \]

Handles

- Intuition: Want to reduce only if the result can still be reduced to the start symbol
- Assume a rightmost derivation

 \[S \Rightarrow^* \alpha X \omega \Rightarrow \alpha \beta \omega \]
- Then \[X \rightarrow \beta \] in the position after \[\alpha \] is a handle of \[\alpha \beta \omega \]

Handles (Cont.)

- Handles formalize the intuition
 - A handle is a string that can be reduced and also allows further reductions back to the start symbol (using a particular production at a specific spot)
 - We only want to reduce at handles
- Note: We have said what a handle is, not how to find handles
Important Fact #2

Important Fact #2 about bottom-up parsing:

In shift-reduce parsing, handles appear only at the top of the stack, never inside

Why?

* Informal induction on # of reduce moves:
 * True initially, stack is empty
 * Immediately after reducing a handle
 - right-most non-terminal on top of the stack
 - next handle must be to right of right-most non-terminal, because this is a right-most derivation
 - Sequence of shift moves reaches next handle

Summary of Handles

* In shift-reduce parsing, handles always appear at the top of the stack
* Handles are never to the left of the rightmost non-terminal
 - Therefore, shift-reduce moves are sufficient; the need never move left
* Bottom-up parsing algorithms are based on recognizing handles

Recognizing Handles

* There are no known efficient algorithms to recognize handles
 * Solution: use heuristics to guess which stacks are handles
 * On some CFGs, the heuristics always guess correctly
 - For the heuristics we use here, these are the SLR grammars
 - Other heuristics work for other grammars

Grammars

| All CFGs | Unambiguous CFGs | SLR CFGs |

Viable Prefixes

* It is not obvious how to detect handles
 * At each step the parser sees only the stack, not the entire input; start with that . . .
* α is a viable prefix if there is an ω such that $\alpha|\omega$ is a state of a shift-reduce parser
Huh?

- What does this mean? A few things:
 - A viable prefix does not extend past the right end of the handle
 - It’s a viable prefix because it is a prefix of the handle
 - As long as a parser has viable prefixes on the stack no parsing error has been detected

Important Fact #3

Important Fact #3 about bottom-up parsing:

For any grammar, the set of viable prefixes is a regular language

Important Fact #3 (Cont.)

- Important Fact #3 is non-obvious
- We show how to compute automata that accept viable prefixes

Items

- An item is a production with a “.” somewhere on the rhs
- The items for \(T \rightarrow (E) \)
 - \(T \rightarrow (E) \)
 - \(T \rightarrow (.E) \)
 - \(T \rightarrow (E.) \)
 - \(T \rightarrow (E). \)

Items (Cont.)

- The only item for \(X \rightarrow e \) is \(X \rightarrow . \)
- Items are often called “LR(0) items”

Intuition

- The problem in recognizing viable prefixes is that the stack has only bits and pieces of the rhs of productions
 - If it had a complete rhs, we could reduce
- These bits and pieces are always prefixes of rhs of productions
Example

Consider the input (int)

- Then (E) is a state of a shift-reduce parse
- (E) is a prefix of the rhs of $T \to (E)$
 - Will be reduced after the next shift
- Item $T \to (E)$ says that so far we have seen (E of this production and hope to see)

Generalization

- The stack may have many prefixes of rhs’s
 - Prefix, Prefix\textsubscript{2} \ldots Prefi x\textsubscript{n}, Prefix\textsubscript{n}
- Let Prefix\textsubscript{i} be a prefix of rhs of $X_i \to \alpha_i$
 - Prefix\textsubscript{i} will eventually reduce to X_i
 - The missing part of $\alpha\textsubscript{i-1}$ starts with X_i
 - i.e. there is a $X_i \to$ Prefix\textsubscript{i-1} $X_i \beta$ for some β
- Recursively, Prefix\textsubscript{k+1} Prefix\textsubscript{n} eventually reduces to the missing part of α_k

An Example

Consider the string (int * int):

- (int *| int) is a state of a shift-reduce parse
- "(" is a prefix of the rhs of $T \to (E)$
- "e" is a prefix of the rhs of $E \to T$
- "int *" is a prefix of the rhs of $T \to$ int * T

Recognizing Viable Prefixes

Idea: To recognize viable prefixes, we must

- Recognize a sequence of partial rhs’s of productions, where
- Each sequence can eventually reduce to part of the missing suffix of its predecessor

An NFA Recognizing Viable Prefixes

1. Add a dummy production $S' \to S$ to G
2. The NFA states are the items of G
 - Including the extra production
3. For item $E \to \alpha X \beta$ add transition
 - $E \to \alpha X \beta \rightarrow^X E \to \alpha X \beta$
4. For item $E \to \alpha X \beta$ and production $X \to \gamma$ add
 - $E \to \alpha X \beta \rightarrow^{\epsilon} X \rightarrow \gamma$

An NFA Recognizing Viable Prefixes (Cont.)

5. Every state is an accepting state

6. Start state is $S' \rightarrow S$
The states of the DFA are "canonical collections of items" or "canonical collections of LR(0) items".

The Dragon book gives another way of constructing LR(0) items.
Items Valid for a Prefix

An item I is valid for a viable prefix α if the DFA recognizing viable prefixes terminates on input α in a state s containing I.

The items in s describe what the top of the item stack might be after reading input α.

Valid Items Example

- An item is often valid for many prefixes.
- Example: The item $T \rightarrow (E)$ is valid for prefixes $((...$.

Valid Items for (((...

LR(0) Parsing

- Idea: Assume
 - stack contains α
 - next input is t
 - DFA on input α terminates in state s
- Reduce by $X \rightarrow \beta$ if
 - s contains item $X \rightarrow \beta$.
- Shift if
 - s contains item $X \rightarrow \beta, t\omega$
 - equivalent to saying s has a transition labeled t.

LR(0) Conflicts

- LR(0) has a reduce/reduce conflict if:
 - Any state has two reduce items:
 - $X \rightarrow \beta$, and $Y \rightarrow \omega$.
- LR(0) has a shift/reduce conflict if:
 - Any state has a reduce item and a shift item:
 - $X \rightarrow \beta$, and $Y \rightarrow \omega, t\delta$.
SLR

- LR = "Left-to-right scan"
- SLR = "Simple LR"
- SLR improves on LR(0) shift/reduce heuristics
 - Fewer states have conflicts

SLR Parsing

- Idea: Assume
 - stack contains α
 - next input is t
 - DFA on input α terminates in state s
- Reduce by $X \rightarrow \beta$ if
 - s contains item $X \rightarrow \beta$
- Shift if
 - s contains item $X \rightarrow \beta, t$\no

SLR Parsing (Cont.)

- If there are conflicts under these rules, the grammar is not SLR
- The rules amount to a heuristic for detecting handles
 - The SLR grammars are those where the heuristics detect exactly the handles

SLR Conflicts

Follow(E) = { '(', $\}$
Follow(T) = { '*', ')', $\}$

No conflicts with SLR rules!

Precedence Declarations Digression

- Lots of grammars aren't SLR
 - including all ambiguous grammars
- We can parse more grammars by using precedence declarations
 - Instructions for resolving conflicts

Precedence Declarations (Cont.)

- Consider our favorite ambiguous grammar:
 - $E \rightarrow E \cdot E \mid E + E \mid (E) \mid \text{int}$
- The DFA for this grammar contains a state with the following items:
 - $E \rightarrow E \cdot E \mid E \rightarrow E \cdot E$
 - shift/reduce conflict!
- Declaring "*" has higher precedence than +" resolves this conflict in favor of reducing
Precedence Declarations (Cont.)

• The term "precedence declaration" is misleading.

• These declarations do not define precedence; they define conflict resolutions.
 - Not quite the same thing!

Naïve SLR Parsing Algorithm

1. Let M be DFA for viable prefixes of G
2. Let \([x_1...x_n]\) be initial configuration
3. Repeat until configuration is \(S\)$
 - Let \(\alpha\) be current configuration
 - Run \(M\) on current stack \(\alpha\)
 - If \(M\) rejects \(\alpha\), report parsing error
 - Stack \(\alpha\) is not a viable prefix
 - If \(M\) accepts \(\alpha\) with items \(I\), let \(a\) be next input
 - Shift if \(X \rightarrow \beta \cdot a \in I\)
 - Reduce if \(X \rightarrow \beta \in I\) and \(a \in \text{Follow}(X)\)
 - Report parsing error if neither applies

Notes

• If there is a conflict in the last step, grammar is not SLR(k)

• \(k\) is the amount of lookahead
 - In practice \(k = 1\)

SLR Example

<table>
<thead>
<tr>
<th>Configuration DFA Halt State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{int} \cdot \text{int}$)</td>
<td>1 shift</td>
</tr>
</tbody>
</table>

SLR Example

<table>
<thead>
<tr>
<th>Configuration DFA Halt State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{int} \cdot \text{int}$)</td>
<td>1 shift</td>
</tr>
<tr>
<td>(\text{int} \cdot \text{int}$)</td>
<td>3 shift</td>
</tr>
<tr>
<td>(\text{int} \cdot \text{int}$)</td>
<td>3 not in Follow(T) shift</td>
</tr>
</tbody>
</table>
SLR Example

Configuration DFA Halt State Action

int * int$	1	shift	
int	* int$	3	not in Follow(T) shift
int * int$	11	shift	
SLR Example

Configuration DFA Halt State	Action
int * int$	1
int	* int$
int *	int$
int * int	$

Configuration int * int$ | 2
S→E	5
E→T	6
E→T+E	7
T→E	8
T→int * T	9
T→(E)	10

Configuration int * int$ | 2
S→E	5
E→T	6
E→T+E	7
T→E	8
T→int * T	9
T→(E)	10

SLR Example

Configuration DFA Halt State	Action
int * int$	1
int	* int$
int *	int$
int * int	$
int * T	$
Configuration \(\text{int} \times T \$

1. \(S \rightarrow \text{E} \)
2. \(\text{E} \rightarrow \text{T} \)
3. \(\text{E} \rightarrow \text{T} \)
4. \(\text{T} \rightarrow \text{int} \times \text{T} \)
5. \(\text{T} \rightarrow \text{int} \times \text{T} \)
6. \(\text{T} \rightarrow \text{int} \times \text{T} \)
7. \(\text{T} \rightarrow \text{int} \times \text{T} \)
8. \(\text{T} \rightarrow \text{int} \times \text{T} \)
9. \(\text{T} \rightarrow \text{int} \times \text{T} \)
10. \(\text{T} \rightarrow \text{int} \times \text{T} \)

Configuration \(\text{int} \times T \$

1. \(S \rightarrow \text{E} \)
2. \(\text{E} \rightarrow \text{T} \)
3. \(\text{E} \rightarrow \text{T} \)
4. \(\text{T} \rightarrow \text{int} \times \text{T} \)
5. \(\text{T} \rightarrow \text{int} \times \text{T} \)
6. \(\text{T} \rightarrow \text{int} \times \text{T} \)
7. \(\text{T} \rightarrow \text{int} \times \text{T} \)
8. \(\text{T} \rightarrow \text{int} \times \text{T} \)
9. \(\text{T} \rightarrow \text{int} \times \text{T} \)
10. \(\text{T} \rightarrow \text{int} \times \text{T} \)

Configuration \(\text{int} \times T \$

1. \(S \rightarrow \text{E} \)
2. \(\text{E} \rightarrow \text{T} \)
3. \(\text{E} \rightarrow \text{T} \)
4. \(\text{T} \rightarrow \text{int} \times \text{T} \)
5. \(\text{T} \rightarrow \text{int} \times \text{T} \)
6. \(\text{T} \rightarrow \text{int} \times \text{T} \)
7. \(\text{T} \rightarrow \text{int} \times \text{T} \)
8. \(\text{T} \rightarrow \text{int} \times \text{T} \)
9. \(\text{T} \rightarrow \text{int} \times \text{T} \)
10. \(\text{T} \rightarrow \text{int} \times \text{T} \)

Configuration \(\text{int} \times T \$

1. \(S \rightarrow \text{E} \)
2. \(\text{E} \rightarrow \text{T} \)
3. \(\text{E} \rightarrow \text{T} \)
4. \(\text{T} \rightarrow \text{int} \times \text{T} \)
5. \(\text{T} \rightarrow \text{int} \times \text{T} \)
6. \(\text{T} \rightarrow \text{int} \times \text{T} \)
7. \(\text{T} \rightarrow \text{int} \times \text{T} \)
8. \(\text{T} \rightarrow \text{int} \times \text{T} \)
9. \(\text{T} \rightarrow \text{int} \times \text{T} \)
10. \(\text{T} \rightarrow \text{int} \times \text{T} \)

SLR Example

<table>
<thead>
<tr>
<th>Configuration DFA Halt State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{int} \times \text{int}$</td>
<td>shift</td>
</tr>
<tr>
<td>(\text{int} \times \text{int}$</td>
<td>shift</td>
</tr>
<tr>
<td>(\text{int} \times \text{int}$</td>
<td>shift</td>
</tr>
<tr>
<td>(\text{int} \times \text{int}$</td>
<td>red, T→int</td>
</tr>
<tr>
<td>(\text{int} \times \text{T}$</td>
<td>red, T→int*T</td>
</tr>
<tr>
<td>(\text{T}$</td>
<td>red, E→T</td>
</tr>
</tbody>
</table>

Configuration \(\text{T}\$

1. \(S \rightarrow \text{E} \)
2. \(\text{E} \rightarrow \text{T} \)
3. \(\text{E} \rightarrow \text{T} \)
4. \(\text{T} \rightarrow \text{int} \times \text{T} \)
5. \(\text{T} \rightarrow \text{int} \times \text{T} \)
6. \(\text{T} \rightarrow \text{int} \times \text{T} \)
7. \(\text{T} \rightarrow \text{int} \times \text{T} \)
8. \(\text{T} \rightarrow \text{int} \times \text{T} \)
9. \(\text{T} \rightarrow \text{int} \times \text{T} \)
10. \(\text{T} \rightarrow \text{int} \times \text{T} \)
Notes

- Skipped using extra start state S' in this example to save space on slides
- Rerunning the automaton at each step is wasteful
 - Most of the work is repeated

An Improvement

- Remember the state of the automaton on each prefix of the stack
- Change stack to contain pairs $(\text{Symbol, DFA State})$

An Improvement (Cont.)

- For a stack $(\text{sym}_1, \text{state}_1) \ldots (\text{sym}_n, \text{state}_n)$
 state_n is the final state of the DFA on $\text{sym}_1 \ldots \text{sym}_n$
- Detail: The bottom of the stack is $(\text{any}, \text{start})$
 - any is any dummy symbol
 - start is the start state of the DFA

Goto Table

- Define $\text{goto}[i, A] = j$ if state, A state
- goto is just the transition function of the DFA
 - One of two parsing tables
Refined Parser Moves

- **Shift x**
 - Push (a, x) on the stack
 - a is current input
 - x is a DFA state

- **Reduce X → α**
 - As before

- **Accept**
- **Error**

Action Table

For each state s, and terminal a

- If s has item X → α, a, and goto[i,a] = j then
 - action[i,a] = shift j

- If s has item X → α, and a ∈ Follow(X) and X ≠ S’ then
 - action[i,a] = reduce X → α

- If s has item S’ → S, then
 - action[i,$] = accept
- Otherwise, action[i,a] = error

SLR Parsing Algorithm

Let I = w$ be initial input
Let i = 0
Let DFA state i have item S’ → S
Let stack = (dummy, i)
repeat
 case action[top_state(stack), I[j]] of
 shift k: push (I[j++], k)
 reduce X → A:
 pop |A| pairs,
 push (X, goto[top_state(stack), X])
 accept: halt normally
 error: halt and report error

Notes on SLR Parsing Algorithm

- Note that the algorithm uses only the DFA states and the input
 - The stack symbols are never used!

- However, we still need the symbols for semantic actions

More Notes

- Some common constructs are not SLR(1)

- LR(1) is more powerful
 - Build lookahead into the items
 - An LR(1) item is a pair: LR(0) item x lookahead
 - [T → . int * T, $] means
 - After seeing T → int * T reduce if lookahead is $
 - More accurate than just using follow sets
 - Take a look at the LR(1) automaton for your parser!