Bottom-Up Parsing II

Lecture 8

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications
Review: Shift-Reduce Parsing

Bottom-up parsing uses two actions:

Shift

\[ABC|xyz \Rightarrow ABCx|yz \]

Reduce

\[Cbxy|ijk \Rightarrow CbA|ijk \]
Recall: The Stack

• Left string can be implemented by a stack
 - Top of the stack is the |

• Shift pushes a terminal on the stack

• Reduce
 - pops 0 or more symbols off of the stack
 • production rhs
 - pushes a non-terminal on the stack
 • production lhs
Key Issue

• How do we decide when to shift or reduce?

• Example grammar:

\[
E \rightarrow T + E \mid T \\
T \rightarrow \text{int} \ast T \mid \text{int} \mid (E)
\]

• Consider step \text{int} \mid \ast \text{int} + \text{int}
 - We could reduce by \(T \rightarrow \text{int} \) giving \(T \mid \ast \text{int} + \text{int} \)
 - A fatal mistake!
 • No way to reduce to the start symbol \(E \)
Definition: Handles

- Intuition: Want to reduce only if the result can still be reduced to the start symbol

- Assume a rightmost derivation

\[S \rightarrow^* \alpha X \omega \rightarrow \alpha \beta \omega \]

- Then \(X \rightarrow \beta \) in the position after \(\alpha \) is a handle of \(\alpha \beta \omega \)

- Can and must reduce at handles
Handles (Cont.)

• Handles formalize the intuition
 - A handle is a string that can be reduced and also allows further reductions back to the start symbol (using a particular production at a specific spot)

• We only want to reduce at handles

• Note: We have said what a handle is, not how to find handles
Important Fact #2 about bottom-up parsing:

In shift-reduce parsing, handles appear only at the top of the stack, never inside
Why?

• Informal induction on # of reduce moves:
 • True initially, stack is empty
 • Immediately after reducing a handle
 - right-most non-terminal on top of the stack
 - next handle must be to right of right-most non-terminal, because this is a right-most derivation
 - Sequence of shift moves reaches next handle
Summary of Handles

• In shift-reduce parsing, handles always appear at the top of the stack

• Handles are never to the left of the rightmost non-terminal
 - Therefore, shift-reduce moves are sufficient; the need never move left

• Bottom-up parsing algorithms are based on recognizing handles
Recognizing Handles

• There are no known efficient algorithms to recognize handles
• Solution: use heuristics to guess which stacks are handles
• On some CFGs, the heuristics always guess correctly
 - For the heuristics we use here, these are the SLR grammars
 - Other heuristics work for other grammars
Grammars

- All CFGs
- Unambiguous CFGs
- SLR CFGs

SLR CFGs will generate conflicts.
Viable Prefixes

• It is not obvious how to detect handles

• At each step the parser sees only the stack, not the entire input; start with that . . .

\[\alpha \] is a viable prefix if there is an \(\omega \) such that \(\alpha \parallel \omega \) is a state of a shift-reduce parser
Huh?

• What does this mean? A few things:

 - A viable prefix does not extend past the right end of the handle
 - It’s a viable prefix because it is a prefix of the handle
 - As long as a parser has viable prefixes on the stack no parsing error has been detected
Important Fact #3

Important Fact #3 about bottom-up parsing:

For any grammar, the set of viable prefixes is a regular language
Important Fact #3 (Cont.)

• Important Fact #3 is non-obvious

• We show how to compute automata that accept viable prefixes
Items

- An item is a production with a “.” somewhere on the rhs, denoting a focus point

- The items for $T \rightarrow (E)$ are
 $T \rightarrow .(E)$
 $T \rightarrow (.E)$
 $T \rightarrow (E.)$
 $T \rightarrow (E).$
• The only item for $X \rightarrow \varepsilon$ is $X \rightarrow \epsilon$.

• Items are often called “LR(0) items”
Intuition

• The problem in recognizing viable prefixes is that the stack has only bits and pieces of the rhs of productions
 - If it had a complete rhs, we could reduce

• These bits and pieces are always *prefixes* of rhs of productions
Example

Consider the input `(int)`

- Then `(E|)` is a state of a shift-reduce parse

- `(E` is a prefix of the rhs of `T → (E)`
 - Will be reduced after the next shift

- Item `T → (E.)` says that so far we have seen `(E of this production and hope to see)`
Generalization

• The stack may have many prefixes of rhs’s
 \(\text{Prefix}_1 \text{Prefix}_2 \ldots \text{Prefix}_{n-1} \text{Prefix}_n \)

• Let \(\text{Prefix}_i \) be a prefix of rhs of \(X_i \to \alpha_i \)
 - \(\text{Prefix}_i \) will eventually reduce to \(X_i \)
 - The missing part of \(\alpha_{i-1} \) starts with \(X_i \)
 - i.e. there is a \(X_{i-1} \to \text{Prefix}_{i-1} X_i \beta \) for some \(\beta \)

• Recursively, \(\text{Prefix}_{k+1} \ldots \text{Prefix}_n \) eventually reduces to the missing part of \(\alpha_k \)
An Example

Consider the string \((\text{int} \ast \text{int})\):

\((\text{int} \ast | \text{int})\) is a state of a shift-reduce parse

From top of the stack:

“\text{int} \ast ” is a prefix of the rhs of \(T \rightarrow \text{int} \ast T\)

“\epsilon “ is a prefix of the rhs of \(E \rightarrow T\)

“(“ is a prefix of the rhs of \(T \rightarrow (E)\)
An Example (Cont.)

The stack of items

\[T \rightarrow \text{int} \ast .T \]
\[E \rightarrow .T \]
\[T \rightarrow (.E) \]

Says

We've seen \(\text{int} \ast \) of \(T \rightarrow \text{int} \ast T \)
We've seen \(\varepsilon \) of \(E \rightarrow T \)
We've seen \((\) of \(T \rightarrow (E) \)
Recognizing Viable Prefixes

Idea: To recognize viable prefixes, we must

- Recognize a sequence of partial rhs’s of productions, where

- Each sequence can eventually reduce to part of the missing suffix of its predecessor
An NFA Recognizing Viable Prefixes

1. Add a new start production $S' \to S$ to G

2. The NFA states are the items of G
 - (Including the new start production)

3. For item $E \to \alpha.X\beta$ add transition

 $$E \to \alpha.X\beta \to^X E \to \alphaX.\beta$$

4. For item $E \to \alpha.X\beta$ and production $X \to \gamma$ add

 $$E \to \alpha.X\beta \to^\epsilon X \to .\gamma$$
An NFA Recognizing Viable Prefixes (Cont.)

5. Every state is an accepting state

6. Start state is $S' \rightarrow .S$
NFA for Viable Prefixes

\[S' \rightarrow .E \]
NFA for Viable Prefixes

\[
E \rightarrow T + E \mid T \\
T \rightarrow \text{int} * T \mid \text{int} \mid (E)
\]
NFA for Viable Prefixes

\[
\begin{align*}
E & \rightarrow T + E \mid T \\
T & \rightarrow \text{int} \ast T \mid \text{int} \mid (E)
\end{align*}
\]
NFA for Viable Prefixes

Production Rules:

\[E \rightarrow T + E | T \]
\[T \rightarrow \text{int} * T | \text{int} | (E) \]

Graph:

- **Start State:** \(S' \rightarrow E. \)
- **States:**
 - \(T \rightarrow .(E) \)
 - \(S' \rightarrow E. \)
 - \(S' \rightarrow .E \)
 - \(E \rightarrow .T+E \)
 - \(E \rightarrow T.+E \)
 - \(E \rightarrow T. \)
 - \(T \rightarrow .\text{int} \)
 - \(T \rightarrow .\text{int} * T \)
 - \(E \rightarrow T. \)

- **Transition:**
 - \(E \rightarrow .T+E \quad \epsilon \)
 - \(E \rightarrow T.+E \quad T \)
 - \(E \rightarrow T. \quad T \)
 - \(T \rightarrow .\text{int} \quad \epsilon \)
 - \(T \rightarrow .\text{int} * T \quad \epsilon \)
 - \(E \rightarrow T. \quad T \)
NFA for Viable Prefixes

\[
E \rightarrow T + E \mid T \\
T \rightarrow \text{int} \ast T \mid \text{int} \mid (E)
\]
NFA for Viable Prefixes

\[
E \rightarrow T + E \mid T \\
T \rightarrow \text{int} \ast T \mid \text{int} \mid (E)
\]
E → T + E | T
T → int * T | int | (E)

NFA for Viable Prefixes
NFA for Viable Prefixes

\[E \rightarrow T + E | T \]
\[T \rightarrow \text{int} * T | \text{int} | (E) \]
NFA for Viable Prefixes

\[
E \rightarrow T + E \mid T \\
T \rightarrow \text{int} \ast T \mid \text{int} \mid (E)
\]
NFA for Viable Prefixes

\[
E \rightarrow T + E \mid T \\
T \rightarrow \text{int} \ast T \mid \text{int} \mid (E)
\]
NFA for Viable Prefixes

\[
E \rightarrow T + E \mid T \\
T \rightarrow \text{int} * T \mid \text{int} \mid (E)
\]
NFA for Viable Prefixes

\[
E \rightarrow T + E \mid T
\]
\[
T \rightarrow \text{int} * T \mid \text{int} \mid (E)
\]
NFA for Viable Prefixes

E → T + E | T
T → int * T | int | (E)

T → .(E)
T → (.E)
E → (E.)
T → (E).
S' → E.
S' → .E
E → .T
E → T+E
E → T+.E
T → int.
E → T+.E.
T → int.* T
T → int *.T
T → int * T.
T → int.* T
T → int * T
Translation to the DFA

\[S' \rightarrow E. \]
\[E \rightarrow .E \]
\[E \rightarrow T. + E \]
\[T \rightarrow .E \]
\[T \rightarrow int * T \]
\[T \rightarrow int \]
\[T \rightarrow E. \]

\[E \rightarrow T + E \]
\[E \rightarrow .E + E \]
\[T \rightarrow .E \]
\[T \rightarrow int * T \]
\[T \rightarrow int \]
\[T \rightarrow (E.) \]

\[E \rightarrow T + E \]
\[T \rightarrow int * T \]
\[T \rightarrow int \]
\[E \rightarrow T + E \]
\[T \rightarrow .E \]
\[T \rightarrow int * T \]
\[T \rightarrow .int \]
Lingo

The states of the DFA are

“canonical collections of items”

or

“canonical collections of LR(0) items”

The Dragon book gives another way of constructing LR(0) items
Valid Items

Item $X \rightarrow \beta.\gamma$ is valid for a viable prefix $\alpha\beta$ if

$$S' \rightarrow^* \alpha X \omega \rightarrow \alpha \beta \gamma \omega$$

by a right-most derivation

After parsing $\alpha\beta$, the valid items are the possible tops of the stack of items
Items Valid for a Prefix

An item I is valid for a viable prefix α if the DFA recognizing viable prefixes terminates on input α in a state s containing I.

The items in s describe what the top of the item stack might be after reading input α.
Valid Items Example

• An item is often valid for many prefixes

• Example: The item $T \rightarrow (.E)$ is valid for prefixes

 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)
 (
)

Valid Items for ((...
LR(0) Parsing

• Idea: Assume
 - stack contains \(\alpha \)
 - next input is \(\dagger \)
 - DFA on input \(\alpha \) terminates in state \(s \)

• Reduce by \(X \rightarrow \beta \) if
 - \(s \) contains item \(X \rightarrow \beta \).

• Shift if
 - \(s \) contains item \(X \rightarrow \beta.\dagger \omega \)
 - equivalent to saying \(s \) has a transition labeled \(\dagger \)
LR(0) Conflicts

• LR(0) has a reduce/reduce conflict if:
 - Any state has two reduce items:
 - $X \rightarrow \beta.$ and $Y \rightarrow \omega.$

• LR(0) has a shift/reduce conflict if:
 - Any state has a reduce item and a shift item:
 - $X \rightarrow \beta.$ and $Y \rightarrow \omega. \uparrow \delta$
LR(0) Conflicts

S' → E.
E → T.
E → T + E
T → .E
T → .T + E
T → .int * T
T → .int

E → T + .E
E → .T
E → .T + E
T → .(E)
T → .int * T
T → .int

T → int * T
T → .int
T → .int

Two shift/reduce conflicts with LR(0) rules
SLR

• LR = “Left-to-right scan”
• SLR = “Simple LR”

• SLR improves on LR(0) shift/reduce heuristics
 - Fewer states have conflicts
SLR Parsing

- Idea: Assume
 - stack contains α
 - next input is \dagger
 - DFA on input α terminates in state s

- Reduce by $X \rightarrow \beta$ if
 - s contains item $X \rightarrow \beta$
 - $\dagger \in \text{Follow}(X)$

- Shift if
 - s contains item $X \rightarrow \beta.\dagger\omega$
SLR Parsing (Cont.)

• If there are conflicts under these rules, the grammar is not SLR

• The rules amount to a heuristic for detecting handles
 - The SLR grammars are those where the heuristics detect exactly the handles
SLR Conflicts

Follow(E) = { ‘)’, $ }
Follow(T) = { ‘+’, ‘)’, $ }

No conflicts with SLR rules!
Lots of grammars aren’t SLR
- including all ambiguous grammars

We can parse more grammars by using precedence declarations
- Instructions for resolving conflicts
Precedence Declarations (Cont.)

• Consider our favorite ambiguous grammar:
 - $E \rightarrow E + E \mid E \times E \mid (E) \mid \text{int}$

• The DFA for this grammar contains a state with the following items:
 - $E \rightarrow E \times E, \quad E \rightarrow E \cdot + E$
 - shift/reduce conflict!

• Declaring “* has higher precedence than +” resolves this conflict in favor of reducing
Precedence Declarations (Cont.)

- The term “precedence declaration” is misleading

- These declarations do not define precedence; they define conflict resolutions
 - Not quite the same thing!
Naïve SLR Parsing Algorithm

1. Let M be DFA for viable prefixes of G
2. Let $|x_1...x_n|$ be initial configuration
3. Repeat until configuration is $S|$
 • Let $\alpha|\omega$ be current configuration
 • Run M on current stack α
 • If M rejects α, report parsing error
 • Stack α is not a viable prefix
 • If M accepts α with items I, let t be next input
 • Reduce if $X \rightarrow \beta. \in I$ and $t \in \text{Follow}(X)$
 • Otherwise, shift if $X \rightarrow \beta. t \gamma \in I$
 • Report parsing error if neither applies
Notes

• If there is a conflict in the last step, grammar is not SLR(k)

• k is the amount of lookahead
 - In practice k = 1

• Will skip using extra start state S' in following example to save space on slides
SLR Example

<table>
<thead>
<tr>
<th>Configuration</th>
<th>DFA Halt State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>int * int$</td>
<td>1</td>
<td>shift</td>
</tr>
</tbody>
</table>

E → T + E | T
T → int * T | int | (E)
SLR Example

<table>
<thead>
<tr>
<th>Configuration</th>
<th>DFA Halt State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>int * int$</td>
<td>1</td>
<td>shift</td>
</tr>
<tr>
<td>int</td>
<td>* int$</td>
<td>3</td>
</tr>
</tbody>
</table>
The diagram represents a context-free grammar for an expression language that includes integers and their operations. The grammar rules are as follows:

- **S'** → E.
- **S'** → .E
- **E** → .T
- **E** → .T + E
- **T** → .(E)
- **T** → .int * T
- **T** → .int
- **E** → T + E
- **E** → int * T
- **E** → int
- **E** → (E)
- **T** → int * T
- **T** → int
- **T** → .(E)
- **T** → .int * T
- **T** → .int

The diagram shows the derivation paths from the start symbol **S'** to various terminal symbols, illustrating the grammar's structure.
SLR Example

Configuration DFA Halt State Action

<table>
<thead>
<tr>
<th>Configuration</th>
<th>DFA Halt State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>int * int$</code></td>
<td>1</td>
<td><code>shift</code></td>
</tr>
<tr>
<td>`int</td>
<td>* int$`</td>
<td>3 * not in Follow(T)</td>
</tr>
<tr>
<td>`int *</td>
<td>int$`</td>
<td>11</td>
</tr>
</tbody>
</table>
SLR Example

<table>
<thead>
<tr>
<th>Configuration</th>
<th>DFA Halt State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{int} * \text{int}$</td>
<td>1</td>
<td>shift</td>
</tr>
<tr>
<td>int | * \text{int}$</td>
<td>3 * not in Follow(T)</td>
<td>shift</td>
</tr>
<tr>
<td>int * | int$</td>
<td>11</td>
<td>shift</td>
</tr>
<tr>
<td>\text{int} * \text{int} |$</td>
<td>3 $ \in Follow(T)</td>
<td>reduce T→int</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
E & \rightarrow T + E \mid T \\
T & \rightarrow \text{int} * T \mid \text{int} \mid (E)
\end{align*}
\]
int * int |$
SLR Example

Configuration DFA Halt State Action

<table>
<thead>
<tr>
<th>Configuration</th>
<th>DFA Halt State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>`</td>
<td>int * int$`</td>
<td>1</td>
</tr>
<tr>
<td>`int</td>
<td>* int$`</td>
<td>3 * not in Follow(T)</td>
</tr>
<tr>
<td>`int *</td>
<td>int$`</td>
<td>11</td>
</tr>
<tr>
<td>`int * int</td>
<td>$`</td>
<td>3 $ ∈ Follow(T)</td>
</tr>
<tr>
<td>`int * T</td>
<td>$`</td>
<td>4 $ ∈ Follow(T)</td>
</tr>
</tbody>
</table>
int * T | $
SLR Example

<table>
<thead>
<tr>
<th>Configuration</th>
<th>DFA Halt State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>int * int$</td>
<td>1</td>
<td>shift</td>
</tr>
<tr>
<td>int</td>
<td>* int$</td>
<td>3</td>
</tr>
<tr>
<td>int *</td>
<td>int$</td>
<td>11</td>
</tr>
<tr>
<td>int * int</td>
<td>$</td>
<td>3</td>
</tr>
<tr>
<td>int * T</td>
<td>$</td>
<td>4</td>
</tr>
<tr>
<td>T</td>
<td>$</td>
<td>5</td>
</tr>
</tbody>
</table>
SLR Example

Configuration DFA Halt State

<table>
<thead>
<tr>
<th>Configuration</th>
<th>DFA Halt State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>int * int$</td>
<td>1</td>
<td>shift</td>
</tr>
<tr>
<td>int</td>
<td>* int$</td>
<td>3 * not in Follow(T)</td>
</tr>
<tr>
<td>int *</td>
<td>int$</td>
<td>11</td>
</tr>
<tr>
<td>int * int</td>
<td>$</td>
<td>3 $ ∈ Follow(T)</td>
</tr>
<tr>
<td>int * T</td>
<td>$</td>
<td>4 $ ∈ Follow(T)</td>
</tr>
<tr>
<td>T</td>
<td>$</td>
<td>5 $ ∈ Follow(T)</td>
</tr>
<tr>
<td>E</td>
<td>$</td>
<td>accept</td>
</tr>
</tbody>
</table>
An Improvement

• Rerunning the automaton at each step is wasteful
 - Most of the work is repeated

• Remember the state of the automaton on each prefix of the stack

• Change stack to contain pairs
 \[\langle \text{Symbol}, \text{DFA State} \rangle \]
An Improvement (Cont.)

• For a stack

\[
\langle \text{symbol}_1, \text{state}_1 \rangle \ldots \langle \text{symbol}_n, \text{state}_n \rangle
\]

\text{state}_n \text{ is the final state of the DFA on symbol}_1 \ldots \text{symbol}_n

• Detail: The bottom of the stack is \langle \text{dummy}, \text{start} \rangle

where

- \text{any} is any dummy symbol
- \text{start} is the start state of the DFA
Goto (DFA) Table

- Define $\text{goto}[i,A] = j$ if $\text{state}_i \rightarrow^A \text{state}_j$

- goto is just the transition function of the DFA
 - One of two parsing tables
Refined Parser Moves

• **Shift x**
 - Push \(\langle a, x \rangle \) on the stack
 - \(a \) is current input
 - \(x \) is a DFA state

• **Reduce** \(X \rightarrow \alpha \)
 - As before

• **Accept**

• **Error**
Action Table

For each state s_i and terminal t

- If s_i has item $X \rightarrow \alpha.t\beta$ and $\text{goto}[i,t] = k$ then $\text{action}[i,t] = \text{shift } k$

- If s_i has item $X \rightarrow \alpha.$ and $t \in \text{Follow}(X)$ and $X \neq S'$ then $\text{action}[i,t] = \text{reduce } X \rightarrow \alpha$

- If s_i has item $S' \rightarrow S.$ then $\text{action}[i,\$] = \text{accept}$

- Otherwise, $\text{action}[i,t] = \text{error}$
SLR Parsing Algorithm

Let input = w$ be initial input
Let j = 0
Let DFA state 1 be the one with item S' → .S
Let stack = ⟨ dummy, 1 ⟩
 repeat
 case action[top_state(stack), input[j]] of
 shift k: push ⟨ input[j++], k ⟩ // ⟨ symbol, state ⟩
 reduce X → α:
 pop |α| pairs,
 push ⟨ X, goto[top_state(stack),X] ⟩
 accept: halt normally
 error: halt and report error
Notes on SLR Parsing Algorithm

• Note that the algorithm uses only the DFA states and the input
 - The stack symbols are never used!

• However, we still need the symbols for semantic actions
More Notes

• Some common constructs are not SLR(1)

• LR(1) is more powerful
 - Build lookahead into the items
 - An LR(1) item is a pair: LR(0) item x lookahead
 - \([T \rightarrow \text{int} * T, \$]\) means
 • After seeing \(T \rightarrow \text{int} * T\) reduce if lookahead is \$
 - More accurate than just using follow sets
 - Take a look at the LR(1) automaton for your parser!