Type Checking in COOL (II)

Lecture 10

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications
Lecture Outline

- Type systems and their expressiveness
- Type checking with SELF_TYPE in COOL
- Error recovery in semantic analysis
Expressiveness of Static Type Systems

• Static type systems detect common errors

• But some correct programs are disallowed
 - Some argue for dynamic type checking instead
 - Others argue for more expressive static type checking

• But more expressive type systems are more complex
Dynamic And Static Types

• The dynamic type of an object is the class C that is used in the “new C” expression that created it
 - A run-time notion
 - Even languages that are not statically typed have the notion of dynamic type

• The static type of an expression captures all dynamic types the expression could have
 - A compile-time notion
Dynamic and Static Types. (Cont.)

- In early type systems the set of static types correspond directly with the dynamic types

- Soundness theorem: for all expressions E

 $$\text{dynamic	extunderscore type}(E) = \text{static	extunderscore type}(E)$$

 (in all executions, E evaluates to values of the type inferred by the compiler)

- This gets more complicated in advanced type systems
Dynamic and Static Types in COOL

- A variable of static type \textit{A} can hold values of static type \textit{B}, if \textit{B} \leq \textit{A}

```java
class A { ... }
class B inherits A { ... }
class Main {
    x:A ← new A;
    ...
    x ← new B;
    ...
}
```

- \textit{x} has static type \textit{A}
 - Here, \textit{x}’s value has dynamic type \textit{A}
 - Here, \textit{x}’s value has dynamic type \textit{B}
Dynamic and Static Types

Soundness theorem for the Cool type system:

\[\forall E. \quad \text{dynamic	extunderscore type}(E) \leq \text{static	extunderscore type}(E) \]

Why is this Ok?

- All operations that can be used on an object of type \(A \) can also be used on an object of type \(B \leq A \)
 - Such as fetching the value of an attribute
 - Or invoking a method on the object
- Subclasses only add attributes or methods
- Methods can be redefined but with same type!
An Example

```
class Count {
  i : int ← 0;
  inc () : Count {
    { i ← i + 1;
      self;
    }
  };
};
```

- Class **Count** incorporates a counter
- The **inc** method works for any subclass
- But there is problem lurking in the type system
An Example (Cont.)

- Consider a subclass **Stock** of **Count**

```java
class Stock inherits Count {
    name : String; -- name of item
};
```

- And the following use of **Stock**:

```java
class Main {
    Stock a ← (new Stock).inc ();    // Type checking error!
    ... a.name ... 
};
```
What Went Wrong?

- (new Stock).inc() has dynamic type Stock

- So it is legitimate to write

 Stock a ← (new Stock).inc ()

- But this is not well-typed

 - (new Stock).inc() has static type Count

 - inc () : Count {…}

- The type checker loses type information

 - This makes inheriting inc useless

 - So, we must redefine inc for each of the subclasses, with a specialized return type
SELF_TYPE to the Rescue

• We will extend the type system

• Insight:
 - inc returns “self”
 - Therefore the return value has same type as “self”
 - Which could be Count or any subtype of Count!

• Introduce the keyword SELF_TYPE to use for the return value of such functions
 - We will also need to modify the typing rules to handle SELF_TYPE
SELF_TYPE to the Rescue (Cont.)

- **SELF_TYPE** allows the return type of `inc` to change when `inc` is inherited

- Modify the declaration of `inc` to read
 \[
 \text{inc()} : \text{SELF_TYPE} \ {\{} \ ... \ {\}}
 \]

- The type checker can now prove:
 \[
 C,M \vdash (\text{new Count}).\text{inc()} : \text{Count} \\
 C,M \vdash (\text{new Stock}).\text{inc()} : \text{Stock}
 \]

- The program from before is now well typed
Notes About SELF_TYPE

• SELF_TYPE is not a dynamic type
 - It is a static type
 - It helps the type checker to keep better track of types
 - It enables the type checker to accept more correct programs

• In short, having SELF_TYPE increases the expressive power of the type system
SELF_TYPE and Dynamic Types (Example)

• What can be the dynamic type of the object returned by inc?
 - Answer: whatever could be the type of “self”

 class A inherits Count { } ;
 class B inherits Count { } ;
 class C inherits Count { } ;

 (inc could be invoked through any of these classes)

 - Answer: Count or any subtype of Count
SELF_TYPE and Dynamic Types (Example)

• In general, if SELF_TYPE appears textually in the class C as the declared type of E then

 $\text{dynamic_type}(E) \leq C$

• Note: The meaning of SELF_TYPE depends on where it appears
 – We write SELF_TYPE_C to refer to an occurrence of SELF_TYPE in the body of C

• This suggests a typing rule:

 $\text{SELF_TYPE}_C \leq C$

 (*)
Type Checking

• Rule (*) has an important consequence:
 - In type checking it is always safe to replace SELF_TYPE_c by C

• This suggests one way to handle SELF_TYPE :
 - Replace all occurrences of SELF_TYPE_c by C

• This would be correct but it is like not having SELF_TYPE at all
Operations on SELF_TYPE

• Recall the operations on types
 - \(T_1 \leq T_2 \) \(T_1 \) is a subtype of \(T_2 \)
 - \(\text{lub}(T_1, T_2) \) the least-upper bound of \(T_1 \) and \(T_2 \)

• We must extend these operations to handle SELF_TYPE
Extending \leq

Let T_1 and T_2 be any types but SELF_TYPE
There are four cases in the definition of \leq

1. $\text{SELF_TYPE}_C \leq \text{SELF_TYPE}_C$
 - In Cool we never need to compare SELF_TYPEs coming from different classes

2. $\text{SELF_TYPE}_C \leq T_1$ if $C \leq T_1$
 - SELF_TYPE_C can be any subtype of C
 - This includes C itself
 - Thus this is the most flexible rule we can allow
Extending \leq (Cont.)

3. $T_1 \leq \text{SELF_TYPE}_C$ always false
 Note: SELF_TYPE_C can denote any subtype of C.

4. $T_1 \leq T_2$ (according to the rules from before)

Based on these rules we can extend lub ...
Extending lub(T,T')

Let T_1 and T_2 be any types but SELF_TYPE
Again there are four cases:
1. lub(SELF_TYPE$_c$, SELF_TYPE$_c$) = SELF_TYPE$_c$
2. lub(SELF_TYPE$_c$, T_1) = lub(C, T_1)
 This is the best we can do because SELF_TYPE$_c$ \leq C
3. lub(T$_1$, SELF_TYPE$_c$) = lub(C, T_1)
4. lub(T$_1$, T_2) defined as before
Where Can SELF_TYPE Appear in COOL?

- The parser checks that **SELF_TYPE** appears only where a type is expected.

- But **SELF_TYPE** is not allowed everywhere a type can appear:

 1. *class T inherits T’ {…}*
 - *T, T’ cannot be SELF_TYPE*

 2. *x : T*
 - *T can be SELF_TYPE*
 - *An attribute whose type is \(\leq \text{SELF_TYPE}_c \)*
3. \(\text{let } x : T \text{ in } E\)
 - \(T\) can be \texttt{SELF_TYPE}\)
 - \(x\) has a type \(\leq \texttt{SELF_TYPE}_C\)

4. \texttt{new } T
 - \(T\) can be \texttt{SELF_TYPE}\)
 - Creates an object of the same type as \texttt{self}\)

5. \texttt{m@T(E}_1{,...,E}_n{)}
 - \(T\) cannot be \texttt{SELF_TYPE}\)
Where Can SELF_TYPE Not Appear in COOL?

6. \(m(x : T) : T' \) { ... }
 - Only \(T' \) can be SELF_TYPE!

What could go wrong if \(T \) were SELF_TYPE?

class A { foo(x : SELF_TYPE) : Bool {...}; };
class B inherits A {
 b : int;
 foo(x : SELF_TYPE) : Bool { ... x.b ...}; };
...
 let x : A ← new B in ... x.foo(new A); ...
...
Typing Rules for SELF_TYPE

• Since occurrences of SELF_TYPE depend on the enclosing class we need to include that context during type checking

• Recall the form of a typing judgment:

\[O, M, C \vdash e : T \]

(An expression \(e \) occurring in the body of \(C \) has static type \(T \) given a variable type environment \(O \) and method signatures \(M \))
Type Checking Rules

- The next step is to design type rules using SELF_TYPE for each language construct.

- Most of the rules remain the same except that \(\leq \) and lub are the new ones.

- Example:

\[
\begin{align*}
O(\text{Id}) &= T_0 \\
O, M, C \vdash e_1 : T_0 \\
T_1 \leq T_0 \\
\hline
O, M, C \vdash \text{Id} \leftarrow e_1 : T_1
\end{align*}
\]
What is Different?

• Recall the old rule for dispatch

\[O,M,C \vdash e_0 : T_0 \]

\[\vdash \]

\[O,M,C \vdash e_n : T_n \]

\[M(T_0, f) = (T'_1, ..., T'_n, T'_{n+1}) \]

\[T'_{n+1} \neq \text{SELF_TYPE} \]

\[T_i \leq T'_i \quad 1 \leq i \leq n \]

\[O,M,C \vdash e_0.f(e_1, ..., e_n) : T'_{n+1} \]
What is Different?

- If the return type of the method is `SELF_TYPE` then the type of the dispatch is the type of the dispatch expression:

\[
\begin{align*}
O,M,C \vdash e_0 : T_0 \\
\vdots \\
O,M,C \vdash e_n : T_n \\
M(T_0, f) &= (T'_1, \ldots, T'_n, \text{SELF_TYPE}) \\
T_i &\leq T'_i \quad 1 \leq i \leq n \\
O,M,C \vdash e_0.f(e_1, \ldots, e_n) : T_0
\end{align*}
\]
What is Different?

- Note this rule handles the *Stock* example.

- Formal parameters cannot be `SELF_TYPE`.

- Actual arguments can be `SELF_TYPE`:
 - The extended \leq relation handles this case.

- The type T_0 of the dispatch expression could be `SELF_TYPE`:
 - Which class is used to find the declaration of f?
 - Answer: it is safe to use the class where the dispatch appears.
Static Dispatch

• Recall the original rule for static dispatch

\[
\begin{align*}
O, M, C & \vdash e_0 : T_0 \\
\vdots & \\
O, M, C & \vdash e_n : T_n \\
T_0 & \leq T \\
M(T, f) & = (T_1', ..., T_n', T_{n+1}') \\
T_{n+1}' & \neq \text{SELF_TYPE} \\
T_i & \leq T_i' \quad 1 \leq i \leq n \\
\hline
O, M, C & \vdash e_0 @T.f(e_1, ..., e_n) : T_{n+1}'
\end{align*}
\]
Static Dispatch

- If the return type of the method is `SELF_TYPE` we have:

\[
O,M,C \vdash e_0 : T_0 \\
\vdots \\
O,M,C \vdash e_n : T_n \\
T_0 \leq T \\
M(T, f) = (T_1',...,T_n',SELF_TYPE) \\
T_i \leq T_i' \quad 1 \leq i \leq n \\
O,M,C \vdash e_0@T.f(e_1,...,e_n) : T_0
\]
Static Dispatch

• Why is this rule correct?

• If we dispatch a method returning SELF_TYPE in class T, don’t we get back a T?

• No. SELF_TYPE is the type of the self parameter, which may be a subtype of the class in which the method appears
New Rules

• There are two new rules using \texttt{SELF_TYPE}

\[
\begin{align*}
O,M,C & \vdash \text{self : SELF_TYPE}_C \\
O,M,C & \vdash \text{new SELF_TYPE : SELF_TYPE}_C
\end{align*}
\]

• There are a number of other places where \texttt{SELF_TYPE} is used
Summary of SELF_TYPE

• The extended ≤ and lub operations can do a lot of the work.

• SELF_TYPE can be used only in a few places. Be sure it isn’t used anywhere else.

• A use of SELF_TYPE always refers to any subtype of the current class
 - The exception is the type checking of dispatch. The method return type of SELF_TYPE might have nothing to do with the current class
Why Cover SELF_TYPE?

- SELF_TYPE is a research idea
 - It adds more expressiveness to the type system

- SELF_TYPE is itself not so important
 - except for the project

- Rather, SELF_TYPE is meant to illustrate that type checking can be quite subtle

- In practice, there should be a balance between the complexity of the type system and its expressiveness
Error Recovery

• As with parsing, it is important to recover from type errors

• Detecting where errors occur is easier than in parsing
 - There is no reason to skip over portions of code

• The Problem:
 - What type is assigned to an expression with no legitimate type?
 - This type will influence the typing of the enclosing expression
Error Recovery Attempt

- Assign type **Object** to ill-typed expressions

 \[
 \text{let } y : \text{Int} \leftarrow x + 2 \ \text{in} \ y + 3
 \]

- Assume \(x\) is undeclared, then its type is **Object**
- But now we have **Object** + **Int**
- This will generate another typing error
- We then say that that **Object** + **Int** = **Object**
- Then the initializer’s type will not be **Int**
 \[\Rightarrow\] a workable solution but with cascading errors
Better Error Recovery

- We can introduce a new type called No_type for use with ill-typed expressions

- Define $\text{No}_\text{type} \leq C$ for all types C

- Every operation is defined for No_type
 - With a No_type result

- Only one typing error for:
 \[
 \text{let } y : \text{Int} \leftarrow x + 2 \ \text{in} \ y + 3
 \]
Notes

• A “real” compiler would use something like No_type

• However, there are some implementation issues
 - The class hierarchy is not a tree anymore

• The Object solution is fine in the class project