Operational Semantics of Cool

Lecture 13

Motivation

- We must specify for every Cool expression what happens when it is evaluated
 - This is the “meaning” of an expression

- The definition of a programming language:
 - The tokens ⇒ lexical analysis
 - The grammar ⇒ syntactic analysis
 - The typing rules ⇒ semantic analysis
 - The evaluation rules ⇒ code generation and optimization

Evaluation Rules So Far

- We have specified evaluation rules indirectly
 - The compilation of Cool to a stack machine
 - The evaluation rules of the stack machine

- This is a complete description
 - Why isn’t it good enough?

Assembly Language Description of Semantics

- Assembly-language descriptions of language implementation have irrelevant detail
 - Whether to use a stack machine or not
 - Which way the stack grows
 - How integers are represented
 - The particular instruction set of the architecture

- We need a complete description
 - But not an overly restrictive specification

Programming Language Semantics

- A multitude of ways to specify semantics
 - All equally powerful
 - Some more suitable to various tasks than others

- Operational semantics
 - Describes program evaluation via execution rules
 - on an abstract machine
 - Most useful for specifying implementations
 - This is what we use for Cool
Other Kinds of Semantics

- **Denotational semantics**
 - Program's meaning is a mathematical function
 - Elegant, but introduces complications
 - Need to define a suitable space of functions

- **Axiomatic semantics**
 - Program behavior described via logical formulae
 - If execution begins in state satisfying X, then it ends in state satisfying Y
 - X, Y formulae
 - Foundation of many program verification systems

Introduction to Operational Semantics

- Once again we introduce a formal notation
- Logical rules of inference, as in type checking

Inference Rules

- Recall the typing judgment:
 $\text{Context} \vdash e : C$
 (in the given context, expression e has type C)

- We try something similar for evaluation:
 $\text{Context} \vdash e : v$
 (in the given context, expr. e evaluates to value v)

Example Operational Semantics Rule

- Example:
 - $\text{Context} \vdash e_1 : 5$
 - $\text{Context} \vdash e_2 : 7$
 - $\text{Context} \vdash e_1 + e_2 : 12$

 - The result of evaluating an expression can depend on the result of evaluating its subexpressions
 - The rules specify everything that is needed to evaluate an expression

Contexts are Needed for Variables

- Consider the evaluation of $y ← x + 1$
 - We need to keep track of values of variables
 - We need to allow variables to change their values during evaluation

- We track variables and their values with:
 - An environment: tells us where in memory a variable is stored
 - A store: tells us what is in memory

Variable Environments

- A variable environment is a map from variable names to locations
 - Tells in what memory location the value of a variable is stored
 - Keeps track of which variables are in scope

- Example:
 $E = \{ a : l_1, b : l_2 \}$
 - $E(a)$ looks up variable a in environment E
Stores

- A store maps memory locations to values
- Example: \(S = [l_1 \rightarrow 5, l_2 \rightarrow 7] \)
- \(S(l_1) \) is the contents of a location \(l_1 \) in store \(S \)
- \(S' = S[12/l_1] \) defines a store \(S' \) such that \(S'(l_1) = 12 \) and \(S'(l) = S(l) \) if \(l \neq l_1 \)

Cool Values

- Cool values are objects
 - All objects are instances of some class
- \(X(a_1 = l_1, \ldots, a_n = l_n) \) is a Cool object where
 - \(X \) is the class of the object
 - \(a_i \) are the attributes (including inherited ones)
 - \(l_i \) is the location where the value of \(a_i \) is stored

Cool Values (Cont.)

- Special cases (classes without attributes)
 - \(\text{Int}(5) \) the integer 5
 - \(\text{Bool}(true) \) the boolean true
 - \(\text{String}(4, "Cool") \) the string "Cool" of length 4
- There is a special value \(\text{void} \) of type \(\text{Object} \)
 - No operations can be performed on it
 - Except for the test \(\text{isvoid} \)
 - Concrete implementations might use NULL here

Operational Rules of Cool

- The evaluation judgment is \(so, E, S \vdash e : v, S' \)
 - Given \(so \) the current value of \(\text{self} \)
 - And \(E \) the current variable environment
 - And \(S \) the current store
 - If the evaluation of \(e \) terminates then
 - The return value is \(v \)
 - And the new store is \(S' \)

Notes

- "Result" of evaluation is a value and a store
 - New store models the side-effects
- Some things don’t change
 - The variable environment
 - The value of \(\text{self} \)
 - The operational semantics allows for non-terminating evaluations

Operational Semantics for Base Values

- \(so, E, S \vdash \text{true} : \text{Bool}(true), S \)
- \(so, E, S \vdash \text{false} : \text{Bool}(false), S \)
- \(i \) is an integer literal
 - \(so, E, S \vdash i : \text{Int}(i), S' \)
- \(s \) is a string literal
 - \(so, E, S \vdash s : \text{String}(s), S' \)

- No side effects in these cases
 - (the store does not change)
Operational Semantics of Variable References

\[
\begin{align*}
E(id) &= l_{id} \\
S(l_{id}) &= v \\
so, E, S &\vdash id : v, S
\end{align*}
\]

- Note the double lookup of variables
 - First from name to location
 - Then from location to value
- The store does not change

Operational Semantics for Self

\[
so, E, S - self : so, S
\]

- A special case:

Operational Semantics of Assignment

\[
so, E, S : e : v, S_1 \\
E(id) &= l_{id} \\
S(l_{id}) &= v/l_{id} \\
so, E, S &\vdash id : v, S_2
\]

- Three step process
 - Evaluate the right hand side
 \(\rightarrow \) a value \(v \) and new store \(S_1 \)
 - Fetch the location of the assigned variable
 - The result is the value \(v \) and an updated store

Operational Semantics of Conditionals

\[
so, E, S : e_1 : \text{Bool}(true), S_1 \\
so, E, S_1 : e_2 : v, S_2 \\
so, E, S : \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : v, S_2
\]

- The “threading” of the store enforces an evaluation sequence
 - \(e_1 \) must be evaluated first to produce \(S_1 \)
 - Then \(e_2 \) can be evaluated
- The result of evaluating \(e_1 \) is a \text{Bool}. Why?

Operational Semantics of Sequences

\[
so, E, S : e_1 : v_1, S_1 \\
so, E, S_1 : e_2 : v_2, S_2 \\
so, E, S : e_3 : v_3, S_3 \\
so, E, S : \{ e_1; \ldots; e_3 \} : v_n, S_n
\]

- Again the threading of the store expresses the required evaluation sequence
- Only the last value is used
- But all the side-effects are collected

Operational Semantics of while (I)

\[
so, E, S : e_1 : \text{Bool}(false), S_1 \\
so, E, S : \text{while } e_1 \text{ loop } e_2 \text{ pool : void}, S_1
\]

- If \(e_1 \) evaluates to \text{false} the loop terminates
 - With the side-effects from the evaluation of \(e_1 \)
 - And with result value \text{void}
- Type checking ensures \(e_1 \) evaluates to a \text{Bool}
Operational Semantics of \texttt{while} (II)

\[
\text{so, } E, S \vdash e_1 : \text{Bool}, S_1 \\
\text{so, } E, S_1 \vdash e_2 : v, S_2 \\
\text{so, } E, S_1 \vdash \text{while } e_1 \text{ loop } e_2 \text{ pool : void, } S_3
\]

- Note the sequencing \((S \rightarrow S_1 \rightarrow S_2 \rightarrow S_3)\)
- Note how looping is expressed
 - Evaluation of \"while \ldots \" is expressed in terms of the evaluation of itself in another state
- The result of evaluating \(e_2\) is discarded
 - Only the side-effect is preserved

Operational Semantics of \texttt{let} Expressions (I)

\[
\text{so, } E, S \vdash e_1 : v_1, S_1 \\
\text{so, } ? \vdash e_2 : v_2, S_2 \\
\text{so, } E, S \vdash \text{let } \text{id} : T \leftarrow e_1 \text{ in } e_2 : v_2, S_2
\]

- In what context should \(e_2\) be evaluated?
 - Environment like \(E\) but with a new binding of \text{id} to a fresh location \(l_{\text{new}}\)
 - Store like \(S_1\) but with \(l_{\text{new}}\) mapped to \(v_1\)

Operational Semantics of \texttt{let} Expressions (II)

- We write \(l_{\text{new}} = \text{newloc}(S)\) to say that \(l_{\text{new}}\) is a location not already used in \(S\)
- \text{newloc} is like the memory allocation function
- The operational rule for let:
 \[
 \text{so, } E, S \vdash e_1 : v_1, S_1 \\
 l_{\text{new}} = \text{newloc}(S_1) \\
 \text{so, } E[l_{\text{new}}/\text{id}] , S_1[v_1/l_{\text{new}}] \vdash e_2 : v_2, S_2 \\
 \text{so, } E, S \vdash \text{let } \text{id} : T \leftarrow e_1 \text{ in } e_2 : v_2, S_2
 \]

Operational Semantics of \texttt{new}

- Informal semantics of \texttt{new} \(T\)
 - Allocate locations to hold all attributes of an object of class \(T\)
 - Essentially, allocate a new object
 - Initialize attributes with their default values
 - Evaluate the initializers and set the resulting attribute values
 - Return the newly allocated object

Default Values

- For each class \(A\) there is a default value denoted by \(D_A\)
 - \(D_{\text{int}} = \text{Int}(0)\)
 - \(D_{\text{bool}} = \text{Bool}(false)\)
 - \(D_{\text{string}} = \text{String}(0, "")\)
 - \(D_{\text{void}}\) (for any other class \(A\))

More Notation

- For a class \(A\) we write \(\text{class}(A) = (a_1 : T_1 \leftarrow e_1, ..., a_n : T_n \leftarrow e_n)\) where
 - \(a_i\) are the attributes (including the inherited ones)
 - \(T_i\) are their declared types
 - \(e_i\) are the initializers
Operational Semantics of new

• new SELF_TYPE allocates an object with the same dynamic type as self

\[T_0 = \begin{cases} \text{true} & \text{if } (T == \text{SELF_TYPE} \text{ and } \text{so} = X(...)) \text{ then } X \text{ else } T \\ \text{class}(T_0) = (a_1 : T_1, ..., a_n : T_n) \\ l_i = \text{newloc}(S) \text{ for } i = 1, ..., n \\ v = T_0(a_2 = l_2, ..., a_n = l_n) \\ S_1 = S[l_1/D_1] \\ E' = [a_1 : l_1, ..., a_n : l_n] \\ v, E', S_1 = \text{new } T : v, S_2 \\ \text{so, E, S} \rightarrow (e, v), S_2 \end{cases} \]

Notes on Operational Semantics of new.

• The first three steps allocate the object
• The remaining steps initialize it
 - By evaluating a sequence of assignments
• State in which the initializers are evaluated
 - Self is the current object
 - Only the attributes are in scope (same as in typing)
 - Initial values of attributes are the defaults

Operational Semantics of Method Dispatch

• Informal semantics of \(e_0.f(e_1, ..., e_n) \)
 - Evaluate the arguments in order \(e_1, ..., e_n \)
 - Evaluate \(e_0 \) to the target object
 - Let \(X \) be the dynamic type of the target object
 - Fetch from \(X \) the definition of \(f \) (with \(n \) args.)
 - Create \(n \) new locations and an environment that maps \(f \)'s formal arguments to those locations
 - Initialize the locations with the actual arguments
 - Set \(\text{self} \) to the target object and evaluate \(f \)'s body

More Notation

• For a class \(A \) and a method \(f \) of \(A \) (possibly inherited) we write:

\[
\text{impl}(A, f) = (x_1, ..., x_n, e_{\text{body}})
\]

where

- \(x_i \) are the names of the formal arguments
- \(e_{\text{body}} \) is the body of the method

Operational Semantics of Dispatch

\[
\text{so, E, S} \vdash e_0 : v_1, S_1 \\
\text{so, E, S} \vdash e_1 : v_2, S_2 \\
\vdots \\
\text{so, E, S} \vdash e_n : v_n, S_n \\
\text{so, E, S} \vdash X(a_1 = l_1, ..., a_n = l_n) \\
\text{impl}(X, f) = (x_1, ..., x_n, e_{\text{body}}) \\
l_i = \text{newloc}(S_{i+1}) \text{ for } i = 1, ..., n \\
E' = [a_1 : l_1, ..., a_n : l_n][x_1/l_1, ..., x_n/l_n] \\
S_{n+2} = S_{n+1}[v_1/l_1, ..., v_n/l_n] \\
v_0, E', S_{n+2} = \text{ebody : v, S_{n+3}} \\
\text{so, E, S} \vdash e_0.f(e_1, ..., e_n) : v, S_{n+3}
\]

Notes on Operational Semantics of Dispatch

• The body of the method is invoked with
 - \(E \) mapping formal arguments and self's attributes
 - \(S \) like the caller's except with actual arguments bound to the locations allocated for formals
• The notion of the frame is implicit
 - New locations are allocated for actual arguments
• The semantics of static dispatch is similar
Runtime Errors

Operational rules do not cover all cases
Consider the dispatch example:

\[
\begin{align*}
\text{so, } E, S_n & : e_0 : V_0, S_{n+1} \\
v_0 & = X(a_1 = l_1, \ldots, a_m = l_m) \\
\text{impl}(X, f) & = (x_1, \ldots, x_n, e_{n+1}) \\
\text{so, } E, S & : e_0, f(e_1, \ldots, e_n) : v, S_{n+3}
\end{align*}
\]

What happens if \(\text{impl}(X, f)\) is not defined?
Cannot happen in a well-typed program

Runtime Errors (Cont.)

- There are some runtime errors that the type checker does not prevent
 - A dispatch on void
 - Division by zero
 - Substring out of range
 - Heap overflow

- In such cases execution must abort gracefully
 - With an error message, not with segfault

Conclusions

- Operational rules are very precise & detailed
 - Nothing is left unspecified
 - Read them carefully

- Most languages do not have a well specified operational semantics

- When portability is important an operational semantics becomes essential