Operational Semantics of Cool

CS143
Lecture 13

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications
Lecture Outline

• COOL operational semantics

• Motivation

• Notation

• The rules
Motivation

• We must specify for every Cool expression what happens when it is evaluated
 – This is the “meaning” of an expression

• The definition of a programming language:
 – The tokens \Rightarrow lexical analysis
 – The grammar \Rightarrow syntactic analysis
 – The typing rules \Rightarrow semantic analysis
 – The evaluation rules
 \Rightarrow code generation and optimization
Evaluation Rules So Far

• We have specified evaluation rules indirectly
 – The compilation of Cool to a stack machine
 – The evaluation rules of the stack machine

• This is a complete description
 – Why isn’t it good enough?
Assembly Language Description of Semantics

• Assembly-language descriptions of language implementation have irrelevant detail
 – Whether to use a stack machine or not
 – Which way the stack grows
 – How integers are represented
 – The particular instruction set of the architecture

• We need a complete description
 – But not an overly restrictive specification
Programming Language Semantics

• A multitude of ways to specify semantics
 – All equally powerful
 – Some more suitable to various tasks than others

• Operational semantics
 – Describes program evaluation via execution rules
 • on an abstract machine
 – Most useful for specifying implementations
 – This is what we use for Cool
Other Kinds of Semantics

• Denotational semantics
 – Program’s meaning is a mathematical function
 – Elegant, but introduces complications
 • Need to define a suitable space of functions

• Axiomatic semantics
 – Program behavior described via logical formulae
 • If execution begins in state satisfying X, then it ends in state satisfying Y
 • X, Y formulas
 – Foundation of many program verification systems
Introduction to Operational Semantics

• Once again we introduce a formal notation

• Logical rules of inference, as in type checking
Inference Rules

• Recall the typing judgment
 \[\text{Context} \vdash e : C \]
 (in the given context, expression \(e \) has type \(C \))

• We try something similar for evaluation
 \[\text{Context} \vdash e : v \]
 (in the given context, expr. \(e \) evaluates to value \(v \))
Example Operational Semantics Rule

• Example:

\[
\begin{align*}
\text{Context} & \vdash e_1 : 5 \\
\text{Context} & \vdash e_2 : 7 \\
\hline
\text{Context} & \vdash e_1 + e_2 : 12
\end{align*}
\]

• The result of evaluating an expression can depend on the result of evaluating its subexpressions

• The rules specify everything that is needed to evaluate an expression
Contexts are Needed for Variables

• Consider the evaluation of $y ← x + 1$
 – We need to keep track of values of variables
 – We need to allow variables to change their values during evaluation

• We track variables and their values with:
 – An environment : tells us where in memory a variable is stored
 – A store : tells us what is in memory
Variable Environments

- A variable environment is a map from variable names to locations
 - Tells in what memory location the value of a variable is stored
 - Keeps track of which variables are in scope

- Example:
 \[E = [a : l_1, b : l_2] \]

- \(E(a) \) looks up variable \(a \) in environment \(E \)
Stores

• A store maps memory locations to values
• Example:

\[S = [l_1 \rightarrow 5, \ l_2 \rightarrow 7] \]

• \(S(l_1) \) is the contents of a location \(l_1 \) in store \(S \)

• \(S' = S[12/l_1] \) defines a store \(S' \) such that

\[S'(l_1) = 12 \ \text{ and } \ S'(l) = S(l) \text{ if } l \neq l_1 \]
Cool Values

• Cool values are objects
 – All objects are instances of some class

• $X(a_1 = l_1, \ldots, a_n = l_n)$ is a Cool object where
 – X is the class of the object
 – a_i are the attributes (including inherited ones)
 – l_i is the location where the value of a_i is stored
Cool Values (Cont.)

• Special cases (classes without attributes)
 - `Int(5)` the integer 5
 - `Bool(true)` the boolean true
 - `String(4, “Cool”)` the string “Cool” of length 4

• There is a special value `void` of type `Object`
 - No operations can be performed on it
 - Except for the test `isvoid`
 - Concrete implementations might use NULL here
Operational Rules of Cool

• The evaluation judgment is

\[\text{so, } E, S \vdash e : v, S' \]

read:
 – Given so the current value of self
 – And E the current variable environment
 – And S the current store
 – If the evaluation of e terminates then
 – The return value is v
 – And the new store is S'
Notes

• “Result” of evaluation is a value and a store
 – New store models the side-effects

• Some things don’t change
 – The variable environment
 – The value of self
 – The operational semantics allows for non-terminating evaluations
Operational Semantics for Base Values

- No side effects in these cases
 (the store does not change)

- \(i \) is an integer literal
 so, \(E, S \vdash i : \text{Int}(i), S \)

- \(s \) is a string literal
 \(n \) is the length of \(s \)
 so, \(E, S \vdash s : \text{String}(n,s), S \)
Operational Semantics of Variable References

\[E(id) = l_{id} \]
\[S(l_{id}) = v \]

so, \(E, S \vdash id : v, S \)

• Note the double lookup of variables
 – First from name to location
 – Then from location to value

• The store does not change
Operational Semantics for Self

• A special case:

\[\text{so, } E, S \vdash \text{self : so, } S \]
Operational Semantics of Assignment

so, $E, S \vdash e : v, S_1$

$E(id) = l_{id}$

$S_2 = S_1[v/l_id]$

so, $E, S \vdash id \leftarrow e : v, S_2$

• Three step process
 – Evaluate the right hand side
 \Rightarrow a value v and new store S_1
 – Fetch the location of the assigned variable
 – The result is the value v and an updated store
Operational Semantics of Conditionals (true)

\[
\begin{align*}
\text{so, } E, S \vdash e_1 : \text{Bool(true)}, S_1 \\
\text{so, } E, S_1 \vdash e_2 : v, S_2 \\
\text{so, } E, S \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : v, S_2
\end{align*}
\]

- The “threading” of the store enforces an evaluation sequence
 - \(e_1 \) must be evaluated first to produce \(S_1 \)
 - Then \(e_2 \) can be evaluated

- The result of evaluating \(e_1 \) is a \text{Bool}. Why?
Operational Semantics of Conditionals (false)

\[\text{so, } E, S \vdash e_1 : \text{Bool}(false), S_1\]
\[\text{so, } E, S_1 \vdash e_3 : v, S_2\]
\[\text{so, } E, S \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : v, S_2\]
Operational Semantics of Sequences

\[
\begin{align*}
\text{so, } & E, S \vdash e_1 : v_1, S_1 \\
\text{so, } & E, S_1 \vdash e_2 : v_2, S_2 \\
& \vdots \\
\text{so, } & E, S_{n-1} \vdash e_n : v_n, S_n \\
\text{so, } & E, S \vdash \{ e_1; \ldots; e_n; \} : v_n, S_n
\end{align*}
\]

- Again the threading of the store expresses the required evaluation sequence
- Only the last value is used
- But all the side-effects are collected
Operational Semantics of **while** (I)

\[-\]

\[\text{so, E, } S \vdash e_1 : \text{Bool(false)}, S_1\]

\[\text{so, E, } S \vdash \text{while } e_1 \text{ loop } e_2 \text{ pool : void, } S_1\]

- If \(e_1\) evaluates to **false** the loop terminates
 - With the side-effects from the evaluation of \(e_1\)
 - And with result value **void**

- Type checking ensures \(e_1\) evaluates to a **Bool**
Operational Semantics of while (II)

so, $E, S \vdash e_1 : \text{Bool}(\text{true}), S_1$

so, $E, S_1 \vdash e_2 : v, S_2$

so, $E, S_2 \vdash \text{while } e_1 \text{ loop } e_2 \text{ pool} : \text{void}, S_3$

so, $E, S \vdash \text{while } e_1 \text{ loop } e_2 \text{ pool} : \text{void}, S_3$

• Note the sequencing ($S \rightarrow S_1 \rightarrow S_2 \rightarrow S_3$)

• Note how looping is expressed
 – Evaluation of “while …” is expressed in terms of the evaluation of itself in another state

• The result of evaluating e_2 is discarded
 – Only the side-effect is preserved
Operational Semantics of `let` Expressions (I)

- In what context should e_2 be evaluated?
 - Environment like E but with a new binding of id to a fresh location l_{new}
 - Store like S_1 but with l_{new} mapped to v_1
Operational Semantics of let Expressions (II)

- We write $l_{\text{new}} = \text{newloc}(S)$ to say that l_{new} is a location not already used in S.
- newloc is like the memory allocation function.

- The operational rule for let:

\[
\text{so, E, S} \vdash e_1 : v_1, S_1 \\
l_{\text{new}} = \text{newloc}(S_1) \\
\text{so, E}[l_{\text{new}}/\text{id}], S_1[v_1/l_{\text{new}}] \vdash e_2 : v_2, S_2 \\
\text{so, E, S} \vdash \text{let id : T} \gets e_1 \text{ in e}_2 : v_2, S_2
\]
Operational Semantics of new

• Informal semantics of new T
 – Allocate locations to hold all attributes of an object of class T
 • Essentially, allocate a new object
 – Initialize attributes with their default values
 – Evaluate the initializers and set the resulting attribute values
 – Return the newly allocated object
Default Values

- For each class A there is a default value denoted by D_A
 - $D_{\text{int}} = \text{Int}(0)$
 - $D_{\text{bool}} = \text{Bool}(\text{false})$
 - $D_{\text{string}} = \text{String}(0, "")$
 - $D_A = \text{void}$ (for any other class A)
More Notation

• For a class A we write

$$\text{class}(A) = (a_1 : T_1 \leftarrow e_1, \ldots, a_n : T_n \leftarrow e_n)$$

where

- a_i are the attributes (including the inherited ones)
- T_i are their declared types
- e_i are the initializers
Operational Semantics of new

- **new SELF_TYPE** allocates an object with the same dynamic type as **self**

\[
T_0 = \text{if (} T == \text{SELF_TYPE and } so = X(...) \text{ then } X \text{ else } T \\
\text{class}(T_0) = (a_1 : T_1 \leftarrow e_1, \ldots, a_n : T_n \leftarrow e_n) \\
l_i = \text{newloc}(S) \text{ for } i = 1, \ldots, n \\
v = T_0(a_1 = l_1, \ldots, a_n = l_n) \\
S_1 = S[D_{T_1}/l_1, \ldots, D_{T_n}/l_n] \\
E' = [a_1 : l_1, \ldots, a_n : l_n] \\
v, E', S_1 \vdash \{ a_1 \leftarrow e_1; \ldots; a_n \leftarrow e_n; \} : v_n, S_2 \\
so, E, S \vdash \text{new } T : v, S_2
\]
Notes on Operational Semantics of `new`.

- The first three steps allocate the object
- The remaining steps initialize it
 - By evaluating a sequence of assignments
- State in which the initializers are evaluated
 - Self is the current object
 - Only the attributes are in scope (same as in typing)
 - Initial values of attributes are the defaults
Operational Semantics of Method Dispatch

- Informal semantics of $e_0.f(e_1,\ldots,e_n)$
 - Evaluate the arguments in order e_1,\ldots,e_n
 - Evaluate e_0 to the target object
 - Let X be the **dynamic** type of the target object
 - Fetch from X the definition of f (with n args.)
 - Create n new locations and an environment that maps f’s formal arguments to those locations
 - Initialize the locations with the actual arguments
 - Set `self` to the target object and evaluate f’s body
More Notation

- For a class A and a method f of A (possibly inherited) we write:

$$\text{impl}(A, f) = (x_1, \ldots, x_n, e_{\text{body}})$$

where
- x_i are the names of the formal arguments
- e_{body} is the body of the method
Operational Semantics of Dispatch

\[
\text{so, } E, S \vdash e_1 : \mathit{v}_1, S_1 \\
\text{so, } E, S_1 \vdash e_2 : \mathit{v}_2, S_2 \\
\text{...} \\
\text{so, } E, S_{n-1} \vdash e_n : \mathit{v}_n, S_n \\
\text{so, } E, S_n \vdash e_0 : \mathit{v}_0, S_{n+1} \\
\mathit{v}_0 = \mathit{X}(a_1 = l_1, \ldots, a_m = l_m) \\
\text{impl}(X, f) = (x_1, \ldots, x_n, e_{\text{body}}) \\
\mathit{l}_{x_i} = \text{newloc}(S_{n+1}) \text{ for } i = 1, \ldots, n \\
E' = [a_1 : l_1, \ldots, a_m : l_m, x_1 : l_{x_1}, \ldots, x_n : l_{x_n}] \\
S_{n+2} = S_{n+1}[\mathit{v}_1/l_{x_1}, \ldots, \mathit{v}_n/l_{x_n}] \\
\mathit{v}_0, E', S_{n+2} \vdash e_{\text{body}} : \mathit{v}, S_{n+3} \\
\text{so, } E, S \vdash e_0.f(e_1, \ldots, e_n) : \mathit{v}, S_{n+3}
\]
Notes on Operational Semantics of Dispatch

• The body of the method is invoked with
 – \(E' \) mapping formal arguments and self’s attributes
 – \(S \) like the caller’s except with actual arguments bound to the locations allocated for formals

• The notion of the activation record is implicit
 – New locations are allocated for actual arguments

• The semantics of static dispatch is similar
Runtime Errors

Operational rules do not cover all cases

Consider the dispatch example:

\[\ldots \]
\[\text{so, } E, S_n \vdash e_0 : v_0, S_{n+1} \]
\[v_0 = X(a_1 = l_1, \ldots, a_m = l_m) \]
\[\text{impl}(X, f) = (x_1, \ldots, x_n, e_{\text{body}}) \]
\[\ldots \]
\[\text{so, } E, S \vdash e_0.f(e_1, \ldots, e_n) : v, S_{n+3} \]

What happens if \text{impl}(X, f) is not defined?

Cannot happen in a well-typed program
Runtime Errors (Cont.)

• There are some runtime errors that the type checker does not prevent
 – A dispatch on void
 – Division by zero
 – Substring out of range
 – Heap overflow

• In such cases execution must abort gracefully
 – With an error message, not with segfault
Conclusions

• Operational rules are very precise & detailed
 – Nothing is left unspecified
 – Read them carefully

• Most languages do not have a well specified operational semantics

• When portability is important an operational semantics becomes essential