Operational Semantics of Cool

Lecture 13

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications
Lecture Outline

• COOL operational semantics

• Motivation

• Notation

• The rules
Motivation

• We must specify for every Cool expression what happens when it is evaluated
 - This is the “meaning” of an expression

• The definition of a programming language:
 - The tokens \Rightarrow lexical analysis
 - The grammar \Rightarrow syntactic analysis
 - The typing rules \Rightarrow semantic analysis
 - The evaluation rules
 \Rightarrow code generation and optimization
Evaluation Rules So Far

- We have specified evaluation rules indirectly
 - The compilation of Cool to a stack machine
 - The evaluation rules of the stack machine

- This is a complete description
 - Why isn’t it good enough?
Assembly Language Description of Semantics

• Assembly-language descriptions of language implementation have irrelevant detail
 - Whether to use a stack machine or not
 - Which way the stack grows
 - How integers are represented
 - The particular instruction set of the architecture

• We need a complete description
 - But not an overly restrictive specification
Programming Language Semantics

• A multitude of ways to specify semantics
 - All equally powerful
 - Some more suitable to various tasks than others

• Operational semantics
 - Describes program evaluation via execution rules
 - on an abstract machine
 - Most useful for specifying implementations
 - This is what we use for Cool
Other Kinds of Semantics

• Denotational semantics
 - Program’s meaning is a mathematical function
 - Elegant, but introduces complications
 • Need to define a suitable space of functions

• Axiomatic semantics
 - Program behavior described via logical formulae
 • If execution begins in state satisfying X, then it ends in state satisfying Y
 • X, Y formulas
 - Foundation of many program verification systems
Introduction to Operational Semantics

• Once again we introduce a formal notation

• Logical rules of inference, as in type checking
Inference Rules

• Recall the typing judgment

\[\text{Context} \vdash e : C \]

(in the given context, expression \(e \) has type \(C \))

• We try something similar for evaluation

\[\text{Context} \vdash e : v \]

(in the given context, expr. \(e \) evaluates to value \(v \))
Example Operational Semantics Rule

• Example:

\[
\begin{align*}
\text{Context} \vdash e_1 & : 5 \\
\text{Context} \vdash e_2 & : 7 \\
\hline
\text{Context} \vdash e_1 + e_2 & : 12
\end{align*}
\]

• The result of evaluating an expression can depend on the result of evaluating its subexpressions

• The rules specify everything that is needed to evaluate an expression
Contexts are Needed for Variables

• Consider the evaluation of $y \leftarrow x + 1$
 - We need to keep track of values of variables
 - We need to allow variables to change their values during evaluation

• We track variables and their values with:
 - An environment: tells us where in memory a variable is stored
 - A store: tells us what is in memory
Variable Environments

- A variable environment is a map from variable names to locations:
 - Tells in what memory location the value of a variable is stored
 - Keeps track of which variables are in scope

- Example:
 \[E = [a : l_1, b : l_2] \]
 - \(E(a) \) looks up variable \(a \) in environment \(E \)
Stores

- A store maps memory locations to values
- Example:
 \[S = [l_1 \rightarrow 5, l_2 \rightarrow 7] \]
- \(S(l_1) \) is the contents of a location \(l_1 \) in store \(S \)
- \(S' = S[12/l_1] \) defines a store \(S' \) such that
 \[S'(l_1) = 12 \quad \text{and} \quad S'(l) = S(l) \text{ if } l \neq l_1 \]
Cool Values

• Cool values are objects
 - All objects are instances of some class

• $X(a_1 = l_1, \ldots, a_n = l_n)$ is a Cool object where
 - X is the class of the object
 - a_i are the attributes (including inherited ones)
 - l_i is the location where the value of a_i is stored
Cool Values (Cont.)

- Special cases (classes without attributes)
 - `Int(5)` the integer 5
 - `Bool(true)` the boolean true
 - `String(4, “Cool”)` the string “Cool” of length 4

- There is a special value `void` of type `Object`
 - No operations can be performed on it
 - Except for the test `isvoid`
 - Concrete implementations might use NULL here
Operational Rules of Cool

• The evaluation judgment is

\[\text{so}, E, S \vdash e : v, S' \]

read:
- Given \text{so} the current value of \text{self}
- And \text{E} the current variable environment
- And \text{S} the current store
- If the evaluation of \text{e} terminates then
- The return value is \text{v}
- And the new store is \text{S}'
Notes

• “Result” of evaluation is a value and a store
 - New store models the side-effects

• Some things don’t change
 - The variable environment
 - The value of `self`
 - The operational semantics allows for non-terminating evaluations
Operational Semantics for Base Values

• No side effects in these cases
 (the store does not change)
Operational Semantics of Variable References

\[
\begin{align*}
E(id) &= l_{id} \\
S(l_{id}) &= v \\
\text{so, } E, S &\vdash id : v, S
\end{align*}
\]

• Note the double lookup of variables
 - First from name to location
 - Then from location to value

• The store does not change
Operational Semantics for Self

• A special case:

\[\text{so, } E, S \vdash \text{self : so, } S \]
Operational Semantics of Assignment

- Three step process
 - Evaluate the right hand side
 ⇒ a value \(v \) and new store \(S_1 \)
 - Fetch the location of the assigned variable
 - The result is the value \(v \) and an updated store

\[
\text{so, } E, S \vdash e : v, S_1 \\
E(id) = l_{id} \\
S_2 = S_1[v/l_{id}] \\
\text{so, } E, S \vdash id \leftarrow e : v, S_2
\]
Operational Semantics of Conditionals

\[
\text{so, } E, S \vdash e_1 : \text{Bool(true)}, S_1 \\
\text{so, } E, S_1 \vdash e_2 : v, S_2 \\
\text{so, } E, S \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : v, S_2
\]

• The “threading” of the store enforces an evaluation sequence
 - \(e_1\) must be evaluated first to produce \(S_1\)
 - Then \(e_2\) can be evaluated

• The result of evaluating \(e_1\) is a \text{Bool}. Why?
Operational Semantics of Sequences

\[
\begin{align*}
\text{so, } E, S & \vdash e_1 : v_1, S_1 \\
\text{so, } E, S_1 & \vdash e_2 : v_2, S_2 \\
& \quad \vdots \\
\text{so, } E, S_{n-1} & \vdash e_n : v_n, S_n \\
\text{so, } E, S & \vdash \{ \, e_1; \ldots; e_n; \, \} : v_n, S_n
\end{align*}
\]

\begin{itemize}
 \item Again the threading of the store expresses the required evaluation sequence
 \item Only the last value is used
 \item But all the side-effects are collected
\end{itemize}
Operational Semantics of \textbf{while} (I)

\[
\text{so, } E, S \vdash e_1 : \text{Bool(false)}, S_1 \\
\text{so, } E, S \vdash \text{while } e_1 \text{ loop } e_2 \text{ pool : void, } S_1
\]

- If e_1 evaluates to \textit{false} the loop terminates
 - With the side-effects from the evaluation of e_1
 - And with result value \textit{void}

- Type checking ensures e_1 evaluates to a \textbf{Bool}
Operational Semantics of \texttt{while} (II)

```latex
so, E, S \vdash e_1 : \text{Bool(true)}, S_1
so, E, S_1 \vdash e_2 : v, S_2
so, E, S_2 \vdash \text{while } e_1 \text{ loop } e_2 \text{ pool} : \text{void}, S_3
so, E, S \vdash \text{while } e_1 \text{ loop } e_2 \text{ pool} : \text{void}, S_3
```

- Note the sequencing ($S \rightarrow S_1 \rightarrow S_2 \rightarrow S_3$)
- Note how looping is expressed
 - Evaluation of \texttt{"while ..."} is expressed in terms of the evaluation of itself in another state
- The result of evaluating e_2 is discarded
 - Only the side-effect is preserved
Operational Semantics of \texttt{let} Expressions (I)

\[
\begin{align*}
\text{so, } E, S & \vdash e_1 : v_1, S_1 \\
\text{so, } ?, ?, ? & \vdash e_2 : v, S_2 \\
\text{so, } E, S & \vdash \text{let id : } T \leftarrow e_1 \text{ in } e_2 : v_2, S_2
\end{align*}
\]

\begin{itemize}
 \item In what context should \(e_2 \) be evaluated?
 \begin{itemize}
 \item Environment like \(E \) but with a new binding of \(\text{id} \) to a fresh location \(l_{\text{new}} \)
 \item Store like \(S_1 \) but with \(l_{\text{new}} \) mapped to \(v_1 \)
 \end{itemize}
\end{itemize}
Operational Semantics of let Expressions (II)

- We write $l_{\text{new}} = \text{newloc}(S)$ to say that l_{new} is a location not already used in S
 - \text{newloc} is like the memory allocation function

- The operational rule for let:

$$
\text{so, } E, S \vdash e_1 : v_1, S_1 \\
\text{l}_{\text{new}} = \text{newloc}(S_1) \\
\text{so, } E[l_{\text{new}}/id], S_1[v_1/l_{\text{new}}] \vdash e_2 : v_2, S_2 \\
\text{so, } E, S \vdash \text{let id : T } \leftarrow e_1 \text{ in } e_2 : v_2, S_2
$$
Operational Semantics of new

- Informal semantics of new T
 - Allocate locations to hold all attributes of an object of class T
 - Essentially, allocate a new object
 - Initialize attributes with their default values
 - Evaluate the initializers and set the resulting attribute values
 - Return the newly allocated object
Default Values

- For each class A there is a default value denoted by D_A
 - $D_{\text{int}} = \text{Int}(0)$
 - $D_{\text{bool}} = \text{Bool}(\text{false})$
 - $D_{\text{string}} = \text{String}(0, \text{""})$
 - $D_A = \text{void}$ (for any other class A)
• For a class A we write

\[
\text{class}(A) = (a_1 : T_1 \leftarrow e_1, \ldots, a_n : T_n \leftarrow e_n) \quad \text{where}
\]

- a_i are the attributes (including the inherited ones)
- T_i are their declared types
- e_i are the initializers
Operational Semantics of new

• new SELF_TYPE allocates an object with the same dynamic type as self

\[T_0 = \text{if } (T == \text{SELF_TYPE} \text{ and } so = X(\ldots)) \text{ then } X \text{ else } T \]

\[\text{class}(T_0) = (a_1 : T_1 \leftarrow e_1, \ldots, a_n : T_n \leftarrow e_n) \]

\[l_i = \text{newloc}(S) \text{ for } i = 1, \ldots, n \]

\[v = T_0(a_1 = l_1, \ldots, a_n = l_n) \]

\[S_1 = S[D_{T_1/l_1}, \ldots, D_{T_n/l_n}] \]

\[E' = [a_1 : l_1, \ldots, a_n : l_n] \]

\[v, E', S_1 \vdash \{ a_1 \leftarrow e_1; \ldots; a_n \leftarrow e_n; \} : v_n, S_2 \]

\[\text{so, } E, S \vdash \text{new } T : v, S_2 \]
Notes on Operational Semantics of `new`.

- The first three steps allocate the object
- The remaining steps initialize it
 - By evaluating a sequence of assignments
- State in which the initializers are evaluated
 - Self is the current object
 - Only the attributes are in scope (same as in typing)
 - Initial values of attributes are the defaults
Operational Semantics of Method Dispatch

• Informal semantics of $e_0.f(e_1,\ldots,e_n)$
 - Evaluate the arguments in order e_1,\ldots,e_n
 - Evaluate e_0 to the target object
 - Let X be the dynamic type of the target object
 - Fetch from X the definition of f (with n args.)
 - Create n new locations and an environment that maps f’s formal arguments to those locations
 - Initialize the locations with the actual arguments
 - Set $self$ to the target object and evaluate f’s body
More Notation

• For a class A and a method f of A (possibly inherited) we write:

$$\text{impl}(A, f) = (x_1, \ldots, x_n, e_{\text{body}}) \text{ where}$$
- x_i are the names of the formal arguments
- e_{body} is the body of the method
Operational Semantics of Dispatch

\[
\text{so, } E, S \vdash e_1 : v_1, S_1 \\
\text{so, } E, S_1 \vdash e_2 : v_2, S_2 \\
\ldots \\
\text{so, } E, S_{n-1} \vdash e_n : v_n, S_n \\
\text{so, } E, S_n \vdash e_0 : v_0, S_{n+1} \\
v_0 = X(a_1 = l_1, \ldots, a_m = l_m) \\
\text{impl}(X, f) = (x_1, \ldots, x_n, e_{\text{body}}) \\
l_{x_i} = \text{newloc}(S_{n+1}) \text{ for } i = 1, \ldots, n \\
E' = [a_1 : l_1, \ldots, a_m : l_m][x_1/l_{x_1}, \ldots, x_n/l_{x_n}] \\
S_{n+2} = S_{n+1}[v_1/l_{x_1}, \ldots, v_n/l_{x_n}] \\
v_0, E', S_{n+2} \vdash e_{\text{body}} : v, S_{n+3} \\
\text{so, } E, S \vdash e_0.f(e_1, \ldots, e_n) : v, S_{n+3}
\]
Notes on Operational Semantics of Dispatch

• The body of the method is invoked with
 - E mapping formal arguments and self’s attributes
 - S like the caller’s except with actual arguments bound to the locations allocated for formals

• The notion of the frame is implicit
 - New locations are allocated for actual arguments

• The semantics of static dispatch is similar
Runtime Errors

Operational rules do not cover all cases

Consider the dispatch example:

\[\ldots \]

so, \(E, S_n \vdash e_0 : v_0, S_{n+1} \)

\(v_0 = X(a_1 = l_1, \ldots, a_m = l_m) \)

\(\text{impl}(X, f) = (x_1, \ldots, x_n, e_{\text{body}}) \)

\[\ldots \]

so, \(E, S \vdash e_0.f(e_1, \ldots, e_n) : v, S_{n+3} \)

What happens if \(\text{impl}(X, f) \) is not defined?

Cannot happen in a well-typed program
Runtime Errors (Cont.)

• There are some runtime errors that the type checker does not prevent
 - A dispatch on void
 - Division by zero
 - Substring out of range
 - Heap overflow

• In such cases execution must abort gracefully
 - With an error message, not with segfault
Conclusions

• Operational rules are very precise & detailed
 - Nothing is left unspecified
 - Read them carefully

• Most languages do not have a well specified operational semantics

• When portability is important an operational semantics becomes essential