Intermediate Code & Local Optimizations

Lecture 14

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications
Lecture Outline

• Intermediate code

• Local optimizations

• Next time: global optimizations
Code Generation Summary

• We have discussed
 - Runtime organization
 - Simple stack machine code generation
 - Improvements to stack machine code generation

• Our compiler maps AST to assembly language
 - And does not perform optimizations
Optimization

• Optimization is our last compiler phase

• Most complexity in modern compilers is in the optimizer
 - Also by far the largest phase

• First, we need to discuss intermediate languages
Why Intermediate Languages?

• When should we perform optimizations?
 - On AST
 • Pro: Machine independent
 • Con: Too high level
 - On assembly language
 • Pro: Exposes optimization opportunities
 • Con: Machine dependent
 • Con: Must reimplement optimizations when retargetting
 - On an intermediate language
 • Pro: Machine independent
 • Pro: Exposes optimization opportunities
Intermediate Languages

• Intermediate language = high-level assembly
 - Uses register names, but has an unlimited number
 - Uses control structures like assembly language
 - Uses opcodes but some are higher level
 • E.g., push translates to several assembly instructions
 • Most opcodes correspond directly to assembly opcodes
Three-Address Intermediate Code

• Each instruction is of the form
 \[x := y \text{ op } z \]
 \[x := \text{ op } y \]
 - \(y\) and \(z\) are registers or constants
 - Common form of intermediate code

• The expression \(x + y \times z\) is translated
 \[t_1 := y \times z \]
 \[t_2 := x + t_1 \]
 - Each subexpression has a “name”
Generating Intermediate Code

• Similar to assembly code generation

• But use any number of IL registers to hold intermediate results
Generating Intermediate Code (Cont.)

• \(\text{igen}(e, t) \) function generates code to compute the value of \(e \) in register \(t \)

• Example:
 \[
 \text{igen}(e_1 + e_2, t) =
 \begin{align*}
 \text{igen}(e_1, t_1) & \quad (t_1 \text{ is a fresh register}) \\
 \text{igen}(e_2, t_2) & \quad (t_2 \text{ is a fresh register}) \\
 t := t_1 + t_2
 \end{align*}
 \]

• Unlimited number of registers
 \(\Rightarrow \) simple code generation
Intermediate Code Notes

• You should be able to use intermediate code
 - At the level discussed in lecture

• You are not expected to know how to generate intermediate code
 - Because we won’t discuss it
 - But really just a variation on code generation . . .
An Intermediate Language

\[P \rightarrow SP | \varepsilon \]
\[S \rightarrow \text{id} := \text{id} \text{ op } \text{id} \]
\[| \text{id} := \text{op id} \]
\[| \text{id} := \text{id} \]
\[| \text{push id} \]
\[| \text{id} := \text{pop} \]
\[| \text{if id relop id goto L} \]
\[| L: \]
\[| \text{jump L} \]

- id’s are register names
- Constants can replace id’s
- Typical operators: +, -, *

id’s are register names
Constants can replace id’s
Typical operators: +, -, *
Definition. Basic Blocks

- A **basic block** is a maximal sequence of instructions with:
 - no labels (except at the first instruction), and
 - no jumps (except in the last instruction)

- **Idea:**
 - Cannot jump into a basic block (except at beginning)
 - Cannot jump out of a basic block (except at end)
 - A basic block is a single-entry, single-exit, straight-line code segment
Basic Block Example

• Consider the basic block
 1. \texttt{L:}
 2. \texttt{t := 2 * x}
 3. \texttt{w := t + x}
 4. if \texttt{w > 0 goto L’}

• (3) executes only after (2)
 - We can change (3) to \texttt{w := 3 * x}
 - Can we eliminate (2) as well?
Definition. Control-Flow Graphs

- A **control-flow graph** is a directed graph with
 - Basic blocks as nodes
 - An edge from block A to block B if the execution can pass from the last instruction in A to the first instruction in B
 - E.g., the last instruction in A is `jump L_B`
 - E.g., execution can fall-through from block A to block B
Example of Control-Flow Graphs

- The body of a method (or procedure) can be represented as a control-flow graph

\[
\begin{align*}
x &:= 1 \\
i &:= 1
\end{align*}
\]

\[
\text{L:} \\
x &:= x \times x \\
i &:= i + 1 \\
\text{if } i < 10 \text{ goto L}
\]

- There is one initial node

- All "return" nodes are terminal
Optimization Overview

• Optimization seeks to improve a program’s resource utilization
 - Execution time (most often)
 - Code size
 - Network messages sent, etc.

• Optimization should not alter what the program computes
 - The answer must still be the same
A Classification of Optimizations

• For languages like C and Cool there are three granularities of optimizations
 1. Local optimizations
 • Apply to a basic block in isolation
 2. Global optimizations
 • Apply to a control-flow graph (method body) in isolation
 3. Inter-procedural optimizations
 • Apply across method boundaries

• Most compilers do (1), many do (2), few do (3)
Cost of Optimizations

• In practice, a conscious decision is made not to implement the fanciest optimization known

• Why?
 - Some optimizations are hard to implement
 - Some optimizations are costly in compilation time
 - Some optimizations have low benefit
 - Many fancy optimizations are all three!

• Goal: Maximum benefit for minimum cost
Local Optimizations

• The simplest form of optimizations

• No need to analyze the whole procedure body
 - Just the basic block in question

• Example: algebraic simplification
Algebraic Simplification

• Some statements can be deleted
 \[
 x := x + 0 \\
 x := x \times 1
 \]

• Some statements can be simplified
 \[
 x := x \times 0 \quad \Rightarrow \quad x := 0 \\
 y := y^{**} 2 \quad \Rightarrow \quad y := y \times y \\
 x := x \times 8 \quad \Rightarrow \quad x := x \ll 3 \\
 x := x \times 15 \quad \Rightarrow \quad t := x \ll 4; \; x := t - x
 \]

(on some machines \texttt{\ll} is faster than \texttt{*}; but not on all!)
Constant Folding

• Operations on constants can be computed at compile time
 - If there is a statement $x := y \ op \ z$
 - And y and z are constants
 - Then $y \ op \ z$ can be computed at compile time

• Example: $x := 2 + 2 \implies x := 4$
• Example: if $2 < 0$ jump L can be deleted
• When might constant folding be dangerous?
Flow of Control Optimizations

• Eliminate unreachable basic blocks:
 - Code that is unreachable from the initial block
 • E.g., basic blocks that are not the target of any jump or “fall through” from a conditional

• Why would such basic blocks occur?

• Removing unreachable code makes the program smaller
 - And sometimes also faster
 • Due to memory cache effects (increased spatial locality)
Single Assignment Form

• Some optimizations are simplified if each register occurs only once on the left-hand side of an assignment

• Rewrite intermediate code in *single assignment* form

 \[
 x := z + y \quad b := z + y \\
 a := x \quad \Rightarrow \quad a := b \\
 x := 2 * x \quad x := 2 * b \\
 \]

 \(b\) is a fresh register

- More complicated in general, due to loops
Common Subexpression Elimination

• If
 - Basic block is in single assignment form
 - A definition $x :=$ is the first use of x in a block

• Then
 - When two assignments have the same rhs, they compute the same value

• Example:
 $x := y + z$ $x := y + z$
 $...$ \Rightarrow $...
 w := y + z$ $w := x$
 (the values of x, y, and z do not change in the ... code)
Copy Propagation

- If \(w := x \) appears in a block, replace subsequent uses of \(w \) with uses of \(x \)
 - Assumes single assignment form

- Example:
 \[
 \begin{align*}
 b &:= z + y \\
 a &:= b \\
 x &:= 2 \times a
 \end{align*}
 \]

- Only useful for enabling other optimizations
 - Constant folding
 - Dead code elimination
Copy Propagation and Constant Folding

- Example:
 \[
 \begin{align*}
 a &:= 5 \\
 x &:= 2 \times a \\
 y &:= x + 6 \\
 t &:= x \times y
 \end{align*}
 \Rightarrow
 \begin{align*}
 a &:= 5 \\
 x &:= 10 \\
 y &:= 16 \\
 t &:= 160
 \end{align*}
 \]
Copy Propagation and Dead Code Elimination

If

\(\text{w := rhs appears in a basic block} \)
\(\text{w does not appear anywhere else in the program} \)

Then

the statement \(\text{w := rhs} \) is dead and can be eliminated
- \(\text{Dead} \) = does not contribute to the program’s result

Example: (\(\text{a is not used anywhere else} \))

\[
\begin{align*}
\text{b := z + y} & \quad \text{b := z + y} & \quad \text{b := z + y} \\
\text{a := b} & \quad \Rightarrow \quad \text{a := b} & \quad \Rightarrow \quad \text{x := 2 * b} \\
\text{x := 2 * a} & \quad \text{x := 2 * b}
\end{align*}
\]
Applying Local Optimizations

- Each local optimization does little by itself

- Typically optimizations interact
 - Performing one optimization enables another

- Optimizing compilers repeat optimizations until no improvement is possible
 - The optimizer can also be stopped at any point to limit compilation time
An Example

- Initial code:

  ```
  a := x ** 2  
b := 3       
c := x       
d := c * c   
e := b * 2   
f := a + d   
g := e * f
  ```
An Example

- **Algebraic optimization:**

 \[
 \begin{align*}
 a & := x ** 2 \\
 b & := 3 \\
 c & := x \\
 d & := c * c \\
 e & := b * 2 \\
 f & := a + d \\
 g & := e * f
 \end{align*}
 \]
An Example

• Algebraic optimization:

 \[
 \begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := c \times c \\
 e & := b \ll 1 \\
 f & := a + d \\
 g & := e \times f
 \end{align*}
 \]
An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := c * c
 e := b << 1
 f := a + d
 g := e * f
An Example

- **Copy propagation:**

 a := x * x

 b := 3

 c := x

 d := x * x

 e := 3 << 1

 f := a + d

 g := e * f
An Example

- **Constant folding:**

 $a := x \times x$

 $b := 3$

 $c := x$

 $d := x \times x$

 $e := 3 \ll 1$

 $f := a + d$

 $g := e \times f$
An Example

• **Constant folding:**

 \[a := x \times x \]
 \[b := 3 \]
 \[c := x \]
 \[d := x \times x \]
 \[e := 6 \]
 \[f := a + d \]
 \[g := e \times f \]
An Example

• **Common subexpression elimination:**

\[
\begin{align*}
a & := x \ast x \\
b & := 3 \\
c & := x \\
d & := x \ast x \\
e & := 6 \\
f & := a + d \\
g & := e \ast f
\end{align*}
\]
An Example

- **Common subexpression elimination:**

 \[
 \begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := a \\
 e & := 6 \\
 f & := a + d \\
 g & := e \times f
 \end{align*}
 \]
An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + d
 g := e * f
An Example

• Copy propagation:

 \[a := x \times x \]
 \[b := 3 \]
 \[c := x \]
 \[d := a \]
 \[e := 6 \]
 \[f := a + a \]
 \[g := 6 \times f \]
An Example

• Dead code elimination:

 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + a
 g := 6 * f
An Example

• Dead code elimination:
 \[a := x \times x \]

\[f := a + a \]
\[g := 6 \times f \]

• This is the final form
Peephole Optimizations on Assembly Code

• These optimizations work on intermediate code
 - Target independent
 - But they can be applied on assembly language also

• Peephole optimization is effective for improving assembly code
 - The “peephole” is a short sequence of (usually contiguous) instructions
 - The optimizer replaces the sequence with another equivalent one (but faster)
Peephole Optimizations (Cont.)

• Write peephole optimizations as replacement rules

\[i_1, \ldots, i_n \rightarrow j_1, \ldots, j_m \]

where the rhs is the improved version of the lhs

• Example:

\[
\text{move } a \ b, \text{move } b \ a \rightarrow \text{move } a \ b
\]

- Works if \text{move } b \ a \text{ is not the target of a jump}

• Another example

\[
\text{addiu } a \ a \ i, \text{addiu } a \ a \ j \rightarrow \text{addiu } a \ a \ i+j
\]
Peephole Optimizations (Cont.)

• Many (but not all) of the basic block optimizations can be cast as peephole optimizations
 - Example: addiu $a $b 0 → move $a $b
 - Example: move $a $a →
 - These two together eliminate addiu $a $a 0

• As for local optimizations, peephole optimizations must be applied repeatedly for maximum effect
Local Optimizations: Notes

- Intermediate code is helpful for many optimizations

- Many simple optimizations can still be applied on assembly language

- “Program optimization” is grossly misnamed
 - Code produced by “optimizers” is not optimal in any reasonable sense
 - “Program improvement” is a more appropriate term

- Next time: global optimizations