Intermediate Code & Local Optimizations

Lecture 14

Code Generation Summary

• We have discussed
 - Runtime organization
 - Simple stack machine code generation
 - Improvements to stack machine code generation

• Our compiler maps AST to assembly language
 - And does not perform optimizations

Why Intermediate Languages?

• When should we perform optimizations?
 - On AST
 - Pro: Machine independent
 - Con: Too high level
 - On assembly language
 - Pro: Exposes optimization opportunities
 - Con: Machine dependent
 - Con: Must reimplement optimizations when retargetting
 - On an intermediate language
 - Pro: Machine independent
 - Pro: Exposes optimization opportunities

Optimization

• Optimization is our last compiler phase

• Most complexity in modern compilers is in the optimizer
 - Also by far the largest phase

• First, we need to discuss intermediate languages

Intermediate Languages

• Intermediate language = high-level assembly
 - Uses register names, but has an unlimited number
 - Uses control structures like assembly language
 - Uses opcodes but some are higher level
 - E.g., push translates to several assembly instructions
 - Most opcodes correspond directly to assembly opcodes
Three-Address Intermediate Code

• Each instruction is of the form
 \[x := y \, \text{op} \, z \]
 \[x := \text{op} \, y \]
 - \(y \) and \(z \) are registers or constants
 - Common form of intermediate code
• The expression \(x + y \times z \) is translated
 \[t_1 := y \times z \]
 \[t_2 := x + t_1 \]
 - Each subexpression has a “name”

Generating Intermediate Code

• Similar to assembly code generation
• But use any number of IL registers to hold intermediate results

Generating Intermediate Code (Cont.)

• \(\text{igen}(e, t) \) function generates code to compute the value of \(e \) in register \(t \)
• Example:
 \[\text{igen}(e_1 + e_2, t) = \]
 \[\text{igen}(e_1, t_1) \] \((t_1 \) is a fresh register) \]
 \[\text{igen}(e_2, t_2) \] \((t_2 \) is a fresh register) \]
 \[t := t_1 + t_2 \]
• Unlimited number of registers
 \(\Rightarrow \) simple code generation

Intermediate Code Notes

• You should be able to use intermediate code
 - At the level discussed in lecture
• You are not expected to know how to generate intermediate code
 - Because we won’t discuss it
 - But really just a variation on code generation . . .

An Intermediate Language

\[
P \to \ S \mid e \\
S \to \ id := id \, \text{op} \, id \\
| \ id := \text{op} \, id \\
| \ id := id \\
| \ push \, id \\
| \ id := \text{pop} \\
| \ if \ id \, \text{relop} \, id \, \text{goto} \, L \\
| \ L: \\
| \ jump \, L
\]

• id’s are register names
• Constants can replace id’s
• Typical operators: +, -, *

Definition, Basic Blocks

• A basic block is a maximal sequence of instructions with:
 - no labels (except at the first instruction), and
 - no jumps (except in the last instruction)
• Idea:
 - Cannot jump into a basic block (except at beginning)
 - Cannot jump out of a basic block (except at end)
 - A basic block is a single-entry, single-exit, straight-line code segment
Basic Block Example

- Consider the basic block
 1. \(L: \)
 2. \(t := 2 \times x \)
 3. \(w := t + x \)
 4. if \(w > 0 \) goto \(L' \)

- (3) executes only after (2)
 - We can change (3) to \(w := 3 \times x \)
 - Can we eliminate (2) as well?

Definition. Control-Flow Graphs

- A control-flow graph is a directed graph with
 - Basic blocks as nodes
 - An edge from block A to block B if the execution can pass from the last instruction in A to the first instruction in B
 - E.g., the last instruction in A is \(\text{jump } L_b \)
 - E.g., execution can fall-through from block A to block B

Example of Control-Flow Graphs

- The body of a method (or procedure) can be represented as a control-flow graph
- There is one initial node
- All “return” nodes are terminal

Optimization Overview

- Optimization seeks to improve a program’s resource utilization
 - Execution time (most often)
 - Code size
 - Network messages sent, etc.
- Optimization should not alter what the program computes
 - The answer must still be the same

A Classification of Optimizations

- For languages like C and Cool there are three granularities of optimizations
 1. Local optimizations
 - Apply to a basic block in isolation
 2. Global optimizations
 - Apply to a control-flow graph (method body) in isolation
 3. Inter-procedural optimizations
 - Apply across method boundaries
- Most compilers do (1), many do (2), few do (3)

Cost of Optimizations

- In practice, a conscious decision is made not to implement the fanciest optimization known
 - Why?
 - Some optimizations are hard to implement
 - Some optimizations are costly in compilation time
 - Some optimizations have low benefit
 - Many fancy optimizations are all three!
- Goal: Maximum benefit for minimum cost
Local Optimizations

• The simplest form of optimizations
• No need to analyze the whole procedure body
 - Just the basic block in question
• Example: algebraic simplification

Algebraic Simplification

• Some statements can be deleted
 \[x := x \times 0 \]
 \[x := x \times 1 \]
• Some statements can be simplified
 \[x := x \times 0 \Rightarrow x := 0 \]
 \[y := y \times 2 \Rightarrow y := y \times y \]
 \[x := x \times 8 \Rightarrow x := x \ll 3 \]
 \[x := x \times 15 \Rightarrow t := x \ll 4; x := t - x \]
 (on some machines \(\ll \) is faster than \(\times \); but not on all!)

Constant Folding

• Operations on constants can be computed at compile time
 - If there is a statement \(x := y \ op z \)
 - And \(y \) and \(z \) are constants
 - Then \(y \ op z \) can be computed at compile time
• Example: \(x := 2 + 2 \Rightarrow x := 4 \)
• Example: if \(2 < 0 \) jump \(L \) can be deleted
• When might constant folding be dangerous?

Flow of Control Optimizations

• Eliminate unreachable basic blocks:
 - Code that is unreachable from the initial block
 - E.g., basic blocks that are not the target of any jump or “fall through” from a conditional
• Why would such basic blocks occur?
• Removing unreachable code makes the program smaller
 - And sometimes also faster
 - Due to memory cache effects (increased spatial locality)

Single Assignment Form

• Some optimizations are simplified if each register occurs only once on the left-hand side of an assignment
• Rewrite intermediate code in single assignment form
 \[
 \begin{align*}
 x &:= z + y \\
 a &:= x \\
 x &:= 2 \times b \\
 \end{align*}
 \]
 (\(z \) is a fresh register)
 - More complicated in general, due to loops

Common Subexpression Elimination

• If
 - Basic block is in single assignment form
 - A definition \(x := \) is the first use of \(x \) in a block
• Then
 - When two assignments have the same rhs, they compute the same value
• Example:
 \[
 \begin{align*}
 x &:= y + z \\
 \ldots &:= \ldots \\
 w &:= y + z \\
 w &:= x \\
 \end{align*}
 \]
 (the values of \(x, y, \) and \(z \) do not change in the \(\ldots \) code)
Copy Propagation

• If \(w := x \) appears in a block, replace subsequent uses of \(w \) with uses of \(x \)
 - Assumes single assignment form

• Example:
 \[
 \begin{align*}
 b := z + y & \quad \rightarrow \quad b := z + y \\
 a := b & \quad \rightarrow \quad a := b \\
 x := 2 * a & \quad \rightarrow \quad x := 2 * b
 \end{align*}
 \]

• Only useful for enabling other optimizations
 - Constant folding
 - Dead code elimination

Copy Propagation and Constant Folding

• Example:
 \[
 \begin{align*}
 a := 5 & \quad \Rightarrow \quad a := 5 \\
 x := 2 * a & \quad \Rightarrow \quad x := 10 \\
 y := x + 6 & \quad \Rightarrow \quad y := 16 \\
 t := x + y & \quad \Rightarrow \quad t := x + 4
 \end{align*}
 \]

Copy Propagation and Dead Code Elimination

If \(w := \text{rhs} \) appears in a basic block
\(w \) does not appear anywhere else in the program
Then
the statement \(w := \text{rhs} \) is dead and can be eliminated
- Dead = does not contribute to the program’s result

Example: (a is not used anywhere else)
\[
\begin{align*}
 x := z + y & \quad \Rightarrow \quad x := z + y \\
 b := z + y & \quad \Rightarrow \quad b := z + y \\
 a := x & \quad \Rightarrow \quad a := b \\
 x := 2 * a & \quad \Rightarrow \quad x := 2 * b \\
 x := 2 * b & \quad \Rightarrow \quad x := 2 * b
 \end{align*}
\]

Applying Local Optimizations

• Each local optimization does little by itself

• Typically optimizations interact
 - Performing one optimization enables another

• Optimizing compilers repeat optimizations until no improvement is possible
 - The optimizer can also be stopped at any point to limit compilation time

An Example

• Initial code:
 \[
 \begin{align*}
 a := x \ast 2 \\
 b := 3 \\
 c := x \\
 d := c \ast c \\
 e := b \ast 2 \\
 f := a + d \\
 g := e \ast f
 \end{align*}
 \]

An Example

• Algebraic optimization:
 \[
 \begin{align*}
 a := x \ast 2 \\
 b := 3 \\
 c := x \\
 d := c \ast c \\
 e := b \ast 2 \\
 f := a + d \\
 g := e \ast f
 \end{align*}
 \]
An Example

- Algebraic optimization:
 \[a := x \cdot x\]
 \[b := 3\]
 \[c := x\]
 \[d := c \cdot c\]
 \[e := b << 1\]
 \[f := a + d\]
 \[g := e \cdot f\]

- Copy propagation:
 \[a := x \cdot x\]
 \[b := 3\]
 \[c := x\]
 \[d := x \cdot x\]
 \[e := 3 \cdot c\]
 \[f := a + d\]
 \[g := e \cdot f\]

- Constant folding:
 \[a := x \cdot x\]
 \[b := 3\]
 \[c := x\]
 \[d := x \cdot x\]
 \[e := 6\]
 \[f := a + d\]
 \[g := e \cdot f\]

- Common subexpression elimination:
 \[a := x \cdot x\]
 \[b := 3\]
 \[c := x\]
 \[d := x \cdot x\]
 \[e := 6\]
 \[f := a + d\]
 \[g := e \cdot f\]
An Example

- **Common subexpression elimination:**
 - \(a := x \times x \)
 - \(b := 3 \)
 - \(c := x \)
 - \(d := a \)
 - \(e := 6 \)
 - \(f := a \times d \)
 - \(g := e \times f \)

An Example

- **Copy propagation:**
 - \(a := x \times x \)
 - \(b := 3 \)
 - \(c := x \)
 - \(d := a \)
 - \(e := 6 \)
 - \(f := a \times a \)
 - \(g := 6 \times f \)

An Example

- **Copy propagation:**
 - \(a := x \times x \)
 - \(b := 3 \)
 - \(c := x \)
 - \(d := a \)
 - \(e := 6 \)
 - \(f := a \times d \)
 - \(g := e \times f \)

An Example

- **Copy propagation:**
 - \(a := x \times x \)
 - \(b := 3 \)
 - \(c := x \)
 - \(d := a \)
 - \(e := 6 \)
 - \(f := a + a \)
 - \(g := 6 \times f \)

An Example

- **Dead code elimination:**
 - \(a := x \times x \)
 - \(b := 3 \)
 - \(c := x \)
 - \(d := a \)
 - \(e := 6 \)
 - \(f := a \times a \)
 - \(g := 6 \times f \)

 This is the final form

Peephole Optimizations on Assembly Code

- These optimizations work on intermediate code
 - Target independent
 - But they can be applied on assembly language also

- **Peephole optimization** is effective for improving assembly code
 - The “peephole” is a short sequence of (usually contiguous) instructions
 - The optimizer replaces the sequence with another equivalent one (but faster)
Peephole Optimizations (Cont.)

- Write peephole optimizations as replacement rules
 \(i_1, \ldots, i_n \rightarrow j_1, \ldots, j_m \)
 where the rhs is the improved version of the lhs

- Example:
 \[
 \text{move } $a \text{ } $b, \text{move } $b \text{ } $a \rightarrow \text{move } $a \text{ } $b
 \]
 - Works if \text{move } $b \text{ } $a is not the target of a jump

- Another example
 \[
 \text{addiu } $a \text{ } i, \text{addiu } $a \text{ } j \rightarrow \text{addiu } $a \text{ } i+j
 \]

Peephole Optimizations (Cont.)

- Many (but not all) of the basic block optimizations can be cast as peephole optimizations
 - Example: \text{addiu } $a \text{ } $b 0 \rightarrow \text{move } $a \text{ } $b
 - Example: \text{move } $a \text{ } $a \rightarrow \text{addiu } $a \text{ } $a 0
 - These two together eliminate \text{addiu } $a \text{ } $a 0

- As for local optimizations, peephole optimizations must be applied repeatedly for maximum effect

Local Optimizations: Notes

- Intermediate code is helpful for many optimizations

- Many simple optimizations can still be applied on assembly language

 - “Program optimization” is grossly misnamed
 - Code produced by “optimizers” is not optimal in any reasonable sense
 - “Program improvement” is a more appropriate term

- Next time: global optimizations