Intermediate Code & Local Optimizations

Lecture 14

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications
Lecture Outline

• Intermediate code

• Local optimizations

• Next time: global optimizations
Code Generation Summary

• We have discussed
 - Runtime organization
 - Simple stack machine code generation
 - Improvements to stack machine code generation

• Our compiler maps AST to assembly language
 - And does not perform optimizations
Optimization

- Optimization is our last compiler phase

- Most complexity in modern compilers is in the optimizer
 - Also by far the largest phase

- First, we need to discuss intermediate languages
Why Intermediate Languages?

• When should we perform optimizations?
 - On AST
 • Pro: Machine independent
 • Con: Too high level
 - On assembly language
 • Pro: Exposes optimization opportunities
 • Con: Machine dependent
 • Con: Must reimplement optimizations when retargetting
 - On an intermediate language
 • Pro: Machine independent
 • Pro: Exposes optimization opportunities
Intermediate Languages

- Intermediate language = high-level assembly
 - Uses register names, but has an unlimited number
 - Uses control structures like assembly language
 - Uses opcodes but some are higher level
 - E.g., push translates to several assembly instructions
 - Most opcodes correspond directly to assembly opcodes
Three-Address Intermediate Code

• Each instruction is of the form

\[x := y \text{ op } z \]
\[x := \text{ op } y \]

- \(y \) and \(z \) are registers or constants
- Common form of intermediate code

• The expression \(x + y \times z \) is translated

\[\mathbf{t}_1 := y \times z \]
\[\mathbf{t}_2 := x + \mathbf{t}_1 \]

- Each subexpression has a “name”
Generating Intermediate Code

- Similar to assembly code generation
- But use any number of IL registers to hold intermediate results
• \texttt{igen(e, t)} function generates code to compute the value of \textit{e} in register \textit{t}

• Example:

 \[
 \texttt{igen(e_1 + e_2, t)} = \\
 \texttt{igen(e_1, t_1)} \quad (t_1 \text{ is a fresh register}) \\
 \texttt{igen(e_2, t_2)} \quad (t_2 \text{ is a fresh register}) \\
 \texttt{t := t_1 + t_2}
 \]

• Unlimited number of registers

 \[\Rightarrow \text{simple code generation}\]
Intermediate Code Notes

• You should be able to use intermediate code
 - At the level discussed in lecture

• You are not expected to know how to generate intermediate code
 - Because we won’t discuss it
 - But really just a variation on code generation . . .
An Intermediate Language

P → S P | ε
S → id := id op id
| id := op id
| id := id
| push id
| id := pop
| if id relop id goto L
| L:
| jump L

• id’s are register names
• Constants can replace id’s
• Typical operators: +, -, *
Definition. Basic Blocks

• A **basic block** is a maximal sequence of instructions with:
 - no labels (except at the first instruction), and
 - no jumps (except in the last instruction)

• Idea:
 - Cannot jump into a basic block (except at beginning)
 - Cannot jump out of a basic block (except at end)
 - A basic block is a single-entry, single-exit, straight-line code segment
Basic Block Example

• Consider the basic block
 1. L:
 2. \(t := 2 \times x \)
 3. \(w := t + x \)
 4. if \(w > 0 \) goto L'

• (3) executes only after (2)
 - We can change (3) to \(w := 3 \times x \)
 - Can we eliminate (2) as well?
Definition. Control-Flow Graphs

- A control-flow graph is a directed graph with
 - Basic blocks as nodes
 - An edge from block A to block B if the execution can pass from the last instruction in A to the first instruction in B
 - E.g., the last instruction in A is \texttt{jump L}_B
 - E.g., execution can fall-through from block A to block B
Example of Control-Flow Graphs

- The body of a method (or procedure) can be represented as a control-flow graph

- There is one initial node

- All “return” nodes are terminal
Optimization Overview

• Optimization seeks to improve a program’s resource utilization
 - Execution time (most often)
 - Code size
 - Network messages sent, etc.

• Optimization should not alter what the program computes
 - The answer must still be the same
A Classification of Optimizations

- For languages like C and Cool there are three granularities of optimizations
 1. Local optimizations
 - Apply to a basic block in isolation
 2. Global optimizations
 - Apply to a control-flow graph (method body) in isolation
 3. Inter-procedural optimizations
 - Apply across method boundaries

- Most compilers do (1), many do (2), few do (3)
Cost of Optimizations

• In practice, a conscious decision is made not to implement the fanciest optimization known.

• Why?
 – Some optimizations are hard to implement.
 – Some optimizations are costly in compilation time.
 – Some optimizations have low benefit.
 – Many fancy optimizations are all three!

• Goal: Maximum benefit for minimum cost.
Local Optimizations

• The simplest form of optimizations
• No need to analyze the whole procedure body
 – Just the basic block in question
• Example: algebraic simplification
Algebraic Simplification

• Some statements can be deleted
 \[x := x + 0 \]
 \[x := x \times 1 \]

• Some statements can be simplified
 \[x := x \times 0 \\Rightarrow x := 0 \]
 \[y := y ** 2 \\Rightarrow y := y \times y \]
 \[x := x \times 8 \\Rightarrow x := x \ll 3 \]
 \[x := x \times 15 \\Rightarrow \top := x \ll 4; x := \top - x \]
 (on some machines \ll is faster than \times; but not on all!)
Constant Folding

- Operations on constants can be computed at compile time
 - If there is a statement $x := y \text{ op } z$
 - And y and z are constants
 - Then $y \text{ op } z$ can be computed at compile time

- Example: $x := 2 + 2 \Rightarrow x := 4$
- Example: if $2 < 0$ jump L can be deleted
- When might constant folding be dangerous?
Flow of Control Optimizations

• Eliminate unreachable basic blocks:
 – Code that is unreachable from the initial block
 • E.g., basic blocks that are not the target of any jump or “fall through” from a conditional

• Why would such basic blocks occur?

• Removing unreachable code makes the program smaller
 – And sometimes also faster
 • Due to memory cache effects (increased spatial locality)
Static Single Assignment (SSA) Form

• Some optimizations are simplified if each register occurs only once on the left-hand side of an assignment

• Rewrite intermediate code in *single assignment* form

\[
\begin{align*}
x & := z + y & b & := z + y \\
a & := x & \Rightarrow & a := b \\
x & := 2 \times x & x & := 2 \times b \\
(b \text{ is a fresh register})
\end{align*}
\]

- More complicated in general, due to loops
Common Subexpression Elimination

• If
 - Basic block is in single assignment form
 - A definition $x :=$ is the first use of x in a block

• Then
 - When two assignments have the same rhs, they compute the same value

• Example:

 $x := y + z$ \hspace{1cm} $x := y + z$

 \ldots \hspace{1cm} \Rightarrow \hspace{1cm} \ldots

 $w := y + z$ \hspace{1cm} $w := x$

 (the values of x, y, and z do not change in the ... code)
Copy Propagation

• If $w := x$ appears in a block, replace subsequent uses of w with uses of x
 - Assumes single assignment form

• Example:

 \[
 \begin{align*}
 b &:= z + y \\
 a &:= b \\
 x &:= 2 * a
 \end{align*}
 \]

 \[
 \begin{align*}
 b &:= z + y \\
 a &:= b \\
 x &:= 2 * b
 \end{align*}
 \]

• Only useful for enabling other optimizations
 - Constant folding
 - Dead code elimination
Copy Propagation and Constant Folding

• Example:

 \[
 \begin{align*}
 a &:= 5 \\
 x &:= 2 \times a \\
 y &:= x + 6 \\
 t &:= x \times y
 \end{align*}
 \]
 \[
 \begin{align*}
 a &:= 5 \\
 x &:= 10 \\
 y &:= 16 \\
 t &:= 160
 \end{align*}
 \]
Copy Propagation and Dead Code Elimination

If

\[\text{w := rhs appears in a basic block} \]
\[\text{w does not appear anywhere else in the program} \]

Then

\[\text{the statement w := rhs is dead and can be eliminated} \]
\[\text{- Dead = does not contribute to the program’s result} \]

Example: (a is not used anywhere else)

\[\begin{align*}
\text{b := z + y} & \quad \text{b := z + y} & \quad \text{b := z + y} \\
\text{a := b} & \quad \Rightarrow \quad \text{a := b} & \quad \Rightarrow \quad \text{x := 2 * b} \\
\text{x := 2 * a} & \quad \text{x := 2 * b}
\end{align*} \]
Applying Local Optimizations

• Each local optimization does little by itself

• Typically optimizations interact
 - Performing one optimization enables another

• Optimizing compilers repeat optimizations until no improvement is possible
 - The optimizer can also be stopped at any point to limit compilation time
An Example

• Initial code:

\[
\begin{align*}
 a &:= x \times \times 2 \\
 b &:= 3 \\
 c &:= x \\
 d &:= c \times c \\
 e &:= b \times 2 \\
 f &:= a + d \\
 g &:= e \times f
\end{align*}
\]
An Example

• Algebraic optimization:

 \[
 \begin{align*}
 a & := x ** 2 \\
 b & := 3 \\
 c & := x \\
 d & := c * c \\
 e & := b * 2 \\
 f & := a + d \\
 g & := e * f
 \end{align*}
 \]
An Example

• Algebraic optimization:

\[
\begin{align*}
a & := x \times x \\
b & := 3 \\
c & := x \\
d & := c \times c \\
e & := b \ll 1 \\
f & := a + d \\
g & := e \times f
\end{align*}
\]
An Example

• Copy propagation:

\[a := x \times x \]
\[b := 3 \]
\[c := x \]
\[d := c \times c \]
\[e := b \ll 1 \]
\[f := a + d \]
\[g := e \times f \]
An Example

• Copy propagation:

 \[
 \begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := x \times x \\
 e & := 3 \ll 1 \\
 f & := a + d \\
 g & := e \times f
 \end{align*}
 \]
An Example

- **Constant folding:**

 \[
 \begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := x \times x \\
 e & := 3 \ll 1 \\
 f & := a + d \\
 g & := e \times f
 \end{align*}
 \]
An Example

• Constant folding:

 \[
 \begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := x \times x \\
 e & := 6 \\
 f & := a + d \\
 g & := e \times f
 \end{align*}
 \]
An Example

• Common subexpression elimination:

\[
\begin{align*}
a &:= x \times x \\
b &:= 3 \\
c &:= x \\
d &:= x \times x \\
e &:= 6 \\
f &:= a + d \\
g &:= e \times f
\end{align*}
\]
An Example

• **Common subexpression elimination:**

\[
\begin{align*}
a & := x \times x \\
b & := 3 \\
c & := x \\
d & := a \\
e & := 6 \\
f & := a + d \\
g & := e \times f
\end{align*}
\]
An Example

• Copy propagation:
 \[
 a := x \times x \\
 b := 3 \\
 c := x \\
 d := a \\
 e := 6 \\
 f := a + d \\
 g := e \times f
 \]
An Example

• **Copy propagation:**

  ```
  a := x * x
  b := 3
  c := x
  d := a
  e := 6
  f := a + a
  g := 6 * f
  ```
An Example

- Dead code elimination:

 \[
 \begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := a \\
 e & := 6 \\
 f & := a + a \\
 g & := 6 \times f
 \end{align*}
 \]
An Example

• Dead code elimination:
 \[a := x \times x \]

 \[f := a + a \]
 \[g := 6 \times f \]

• This is the final form
Peephole Optimizations on Assembly Code

• These optimizations work on intermediate code
 - Target independent
 - But they can be applied on assembly language also

• Peephole optimization is effective for improving assembly code
 - The “peephole” is a short sequence of (usually contiguous) instructions
 - The optimizer replaces the sequence with another equivalent one (but faster)
Peephole Optimizations (Cont.)

- Write peephole optimizations as replacement rules
 \[i_1, \ldots, i_n \rightarrow j_1, \ldots, j_m \]
 where the rhs is the improved version of the lhs

- Example:
 \begin{align*}
 \text{move } a & \text{ b, move } b & \text{ a } \rightarrow \text{ move } a & \text{ b} \\
 \text{ - Works if move } b & \text{ a is not the target of a jump}
 \end{align*}

- Another example
 \begin{align*}
 \text{addiu } a & \text{ a i, addiu } a & \text{ a j } \rightarrow \text{ addiu } a & \text{ a i+j}
 \end{align*}
Peephole Optimizations (Cont.)

• Many (but not all) of the basic block optimizations can be cast as peephole optimizations
 - Example: \texttt{addiu \$a \$b 0} → \texttt{move \$a \$b}
 - Example: \texttt{move \$a \$a} →
 - These two together eliminate \texttt{addiu \$a \$a 0}

• As for local optimizations, peephole optimizations must be applied repeatedly for maximum effect
Local Optimizations: Notes

- Intermediate code is helpful for many optimizations

- Many simple optimizations can still be applied on assembly language

- “Program optimization” is somewhat misnamed
 - Code produced by “optimizers” is not optimal in any reasonable sense
 - “Program improvement” is a more appropriate term

- Next time: global optimizations