Global Optimization

CS143
Lecture 15

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications
Lecture Outline

• Global flow analysis

• Global constant propagation

• Liveness analysis
Local Optimization

Recall the simple basic-block optimizations
- Constant propagation
- Dead code elimination

\[
\begin{align*}
X &:= 3 \\
Y &:= Z \ast W \\
Q &:= X + Y
\end{align*}
\]

\[
\begin{align*}
X &:= 3 \\
Y &:= Z \ast W \\
Q &:= 3 + Y
\end{align*}
\]

\[
\begin{align*}
Y &:= Z \ast W \\
Q &:= 3 + Y
\end{align*}
\]
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[A := 2 \times X \]
\[Y := 0 \]
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[Y := 0 \]
\[A := 2 \times X \]
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[
X := 3 \\
B > 0 \\
Y := Z + W \\
Y := 0 \\
A := 2 \times 3
\]
Correctness

• How do we know it is OK to globally propagate constants?

• There are situations where it is incorrect:

 \[\begin{align*}
 X &:= 3 \\
 B &> 0 \\
 Y &:= Z + W \\
 X &:= 4 \\
 Y &:= 0 \\
 A &:= 2 \times X
 \end{align*} \]
Correctness (Cont.)

To replace a use of x by a constant k we must know that:

On every path to the use of x, the last assignment to x is $x := k$ **
Example 1 Revisited

\[
X := 3 \\
B > 0 \\
Y := Z + W \\
Y := 0 \\
A := 2 \times X
\]
Example 2 Revisited

- $X := 3$
- $B > 0$
- $Y := Z + W$
- $X := 4$
- $Y := 0$
- $A := 2 \times X$
Discussion

• The correctness condition is not trivial to check

• “All paths” includes paths around loops and through branches of conditionals

• Checking the condition requires global analysis
 – An analysis of the entire control-flow graph
Global Analysis

Global optimization tasks share several traits:

– The optimization depends on knowing a property X at a particular point in program execution
– Proving X at any point requires knowledge of the entire function
– It is OK to be conservative. If the optimization requires X to be true, then want to know either
 • X is definitely true
 • Don’t know if X is true
– It is always safe to say “don’t know”
Global Analysis (Cont.)

• Global dataflow analysis is a standard technique for solving problems with these characteristics

• Global constant propagation is one example of an optimization that requires global dataflow analysis
Global Constant Propagation

- Global constant propagation can be performed at any point where ** holds

- Consider the case of computing ** for a single variable X at all program points
Global Constant Propagation (Cont.)

- To make the problem precise, we associate one of the following values with X at every program point:

<table>
<thead>
<tr>
<th>value</th>
<th>interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊥</td>
<td>This statement is unreachable</td>
</tr>
<tr>
<td>c</td>
<td>$X = \text{constant } c$</td>
</tr>
<tr>
<td>\top</td>
<td>X is not a constant</td>
</tr>
</tbody>
</table>
Example

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[X := 4 \]
\[X := 2 \]
\[A := 2 \times X \]
\[Y := 0 \]
Using the Information

• Given global constant information, it is easy to perform the optimization
 – Simply inspect the $x =$? associated with a statement using x
 – If x is constant at that point replace that use of x by the constant

• But how do we compute the properties $x =$?
The analysis of a complicated program can be expressed as a combination of simple rules relating the change in information between adjacent statements.
The idea is to “push” or “transfer” information from one statement to the next.

For each statement s, we compute information about the value of x immediately before and after s.

$$C(s,x,\text{in}) = \text{value of } x \text{ before } s$$

$$C(s,x,\text{out}) = \text{value of } x \text{ after } s$$
Transfer Functions

• Define a transfer function that transfers information from one statement to another

• In the following rules, let statement s have immediate predecessor statements p_1, \ldots, p_n
Rule 1

if $C(p_i, x, \text{out}) = \top$ for any i, then $C(s, x, \text{in}) = \top$
Rule 2

\[C(p_i, x, \text{out}) = c \ \& \ C(p_j, x, \text{out}) = d \ \& \ d \leftrightarrow c \ \text{then} \]

\[C(s, x, \text{in}) = \top \]
Rule 3

if $C(p_i, x, \text{out}) = c$ or \bot for all i,

then $C(s, x, \text{in}) = c$
Rule 4

if $C(p_i, x, \text{out}) = \bot$ for all i,

then $C(s, x, \text{in}) = \bot$
The Other Half

• Rules 1-4 relate the out of one statement to the in of the next statement

• Now we need rules relating the in of a statement to the out of the same statement
Rule 5

\[C(s, x, \text{out}) = _ \text{ if } C(s, x, \text{in}) = _ \]
Rule 6

\[C(x := c, x, \text{out}) = c \] if \(c \) is a constant
Rule 7

\[C(x := e, x, \text{out}) = \top, \text{ where } e \text{ is an expression that is not a constant} \]
Rule 8

\[C(y := \ldots, x, \text{out}) = C(y := \ldots, x, \text{in}) \quad \text{if} \quad x \not\leftrightarrow y \]
An Algorithm

1. For every entry s to the program, set $C(s, x, \text{in}) = \perp$

2. Set $C(s, x, \text{in}) = C(s, x, \text{out}) = \perp$ everywhere else

3. Repeat until all points satisfy 1-8:
 Pick s not satisfying 1-8 and update using the appropriate rule
The Value \(Z \)

• To understand why we need \(Z \), look at a loop

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
Y &:= 0 \\
A &:= 2 \times X \\
A &< B
\end{align*}
\]
Discussion

• Consider the statement $Y := 0$
• To compute whether X is constant at this point, we need to know whether X is constant at the two predecessors
 – $X := 3$
 – $A := 2 \times X$

• But info for $A := 2 \times X$ depends on its predecessors, including $Y := 0$!
The Value Z (Cont.)

• Because of cycles, all points must have values at all times

• Intuitively, assigning some initial value allows the analysis to break cycles

• The initial value means “So far as we know so far, control never reaches this point”
Example

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[Y := 0 \]
\[A := 2 \times X \]
\[A < B \]
Example

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[Y := 0 \]
\[A := 2 \times X \]
\[A < B \]
Example

X := 3
B > 0

Y := Z + W

A := 2 * X
A < B

Y := 0

X = 3
Example

X := 3
B > 0

Y := Z + W

A := 2 * X
A < B

X = 3

Y := 0
Orderings

• We can simplify the presentation of the analysis by ordering the values

\[\bot < c < \top \]

• Drawing a picture with “lower” values drawn lower, we get
Orderings (Cont.)

- \top is the greatest value, \bot is the least
 - All constants are in between and incomparable

- Let lub be the least-upper bound in this ordering

- Rules 1-4 can be written using lub:
 $$C(s, x, \text{in}) = \text{lub} \{ C(p, x, \text{out}) \mid p \text{ is a predecessor of } s \}$$
Termination

• Simply saying “repeat until nothing changes” doesn’t guarantee that eventually nothing changes

• The use of lub explains why the algorithm terminates
 – Values start as \(\downarrow \) and only increase
 \(\downarrow \) can change to a constant, and a constant to \(\uparrow \)
 – Thus, \(C(s, x, ___) \) can change at most twice
Thus the algorithm is linear in program size

Number of steps =
Number of C(....) value computed * 2 =
Number of program statements * 4
Once constants have been globally propagated, we would like to eliminate dead code.

After constant propagation, \(X := 3 \) is dead (assuming \(X \) not used elsewhere).
Live and Dead

• The first value of x is dead (never used)

• The second value of x is live (may be used)

• Liveness is an important concept

\[
\begin{align*}
X &:= 3 \\
X &:= 4 \\
Y &:= X
\end{align*}
\]
Liveness

A variable x is live at statement s if

– There exists a statement s' that uses x

– There is a path from s to s'

– That path has no intervening assignment to x
Global Dead Code Elimination

• A statement $x := \ldots$ is dead code if x is dead after the assignment

• Dead statements can be deleted from the program

• But we need liveness information first . . .
Computing Liveness

• We can express liveness in terms of information transferred between adjacent statements, just as in copy propagation

• Liveness is simpler than constant propagation, since it is a boolean property (true or false)
Liveness Rule 1

\[L(p, x, \text{out}) = \lor \{ L(s, x, \text{in}) \mid s \text{ a successor of } p \} \]
Liveness Rule 2

\[L(s, x, \text{in}) = \text{true} \quad \text{if} \quad s \text{ refers to } x \text{ on the rhs} \]
Liveness Rule 3

L(x := e, x, in) = false if e does not refer to x
Liveness Rule 4

\[L(s, x, \text{in}) = L(s, x, \text{out}) \] if \(s \) does not refer to \(x \)
Algorithm

1. Let all $L(\ldots) = \text{false}$ initially

2. Repeat until all statements s satisfy rules 1-4
 Pick s where one of 1-4 does not hold and update using the appropriate rule
Termination

• A value can change from false to true, but not the other way around

• Each value can change only once, so termination is guaranteed

• Once the analysis is computed, it is simple to eliminate dead code
Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

Constant propagation is a forwards analysis: information is pushed from inputs to outputs

Liveness is a backwards analysis: information is pushed from outputs back towards inputs
• There are many other global flow analyses

• Most can be classified as either forward or backward

• Most also follow the methodology of local rules relating information between adjacent program points