Points in Virtual Space

Inside Out, (The Science Behind Pixar)
Point Clouds
Implicit Surfaces
Mesh Surfaces
Points, Edges, and Faces

- **v1**: (1, 8, 0)
- **v2**: (6, 1, 0)
- **v3**: (15, 2, 0)
- **v4**: (17, 14, 0)
- **v5**: (10, 13, 0)
Points, Edges, and Faces

$e_1 = (v_1, v_5)$

$v_1(1, 8, 0)$
$v_2(6, 1, 0)$
$v_3(15, 2, 0)$
$v_4(17, 14, 0)$
$v_5(10, 13, 0)$
Points, Edges, and Faces
Points, Edges, and Faces

- v_1: (1, 8, 0)
- v_2: (6, 1, 0)
- v_3: (15, 2, 0)
- v_4: (17, 14, 0)
- v_5: (10, 13, 0)

These points form a quadrilateral in 3D space.
OpenGL and the Graphics Pipeline

- Blender uses OpenGL for its real-time *scanline renderer*
- OpenGL started by Silicon Graphics Inc. (SGI) 1991 (public 2006)
- Drawing API for 2D/3D graphics
- Designed to be implemented mostly on hardware
- Main competitor is DirectX
- Highly optimized for triangles
GPUs and Gaming Consoles

- GPUs and Consoles are highly optimized for the graphics pipeline
- Nowadays, new generation consoles (as does Blender) also do ray tracing
Why Triangles?

- Can optimize and specialize the geometry pipeline for 1 shape
- Software and algorithms can be optimized
- Hardware (e.g. GPUs) can be specialized
Lots of Triangles

Stanford Bunny
69,451 triangles

David (Digital Michelangelo Project)
56,230,343 triangles
Mathematical Advantages of Triangles

- Easy to break other polygons into triangles
- Triangles guaranteed planar
- Complex objects are well approximated with triangles
- Geometric transformations only need to be applied to vertices
- More, e.g. barycentric interpolation to interpolate vertices to interior
- Not everything though, e.g. fluid sim
TANGRAM PUZZLES
60 different puzzles to create

Challenge visual spatial, visual motor and fine motor skills.
Your Therapy Source
OBJ Files

- Developed by Wavefront Technologies ~1990
- Openly documented ~1995
- Now one of the universal geometry definition file formats used by graphics applications

- Most basic form: list of vertices and faces
- “v” lines denote x, y, z coordinates of vertices
- “f” lines denote indices of vertices for the face
- Indices 1 indexed

- Also supports other polygon meshes
Tessellating a Sphere

- Exercise on Homework
Example Objects
Example: Movies
Example: Games
Adding Geometry: Subdivision

- Procedural algorithm: automatically generate a finer/smoothed mesh from a coarser mesh
Figure 2.1: Example of subdivision for curves in the plane. On the left 4 points connected with straight line segments. To the right of it a refined version: 3 new points have been inserted “inbetween” the old points and again a piecewise linear curve connecting them is drawn. After two more steps of subdivision the curve starts to become rather smooth.
Subdivision of Surfaces
Smooth Subdivision Surfaces Based on Triangles

by

Charles Terrell Loop

A thesis submitted to the faculty of
the University of Utah
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mathematics
The University of Utah
August 1997

2216 citations (and counting) MS thesis!
Loop Subdivision

- Subdivide each triangle into 4 sub-triangles
- Move both the old/new vertices
- Repeat (if desired)
- C^2 continuity almost everywhere (except at some extraordinary vertices where it’s only C^1)
Move Old/New Vertices

- Perturb the position of each new vertex (black) using a weighted average of the four nearby original vertices (grey)
- Perturb the position of each regular original vertex (grey) using a weighted average of the six adjacent original vertices (grey)
Extraordinary Points

- Most vertices are regular (degree 6)
- At extraordinary points, we can use Warren weights:

\[
\beta = \frac{3}{16}, n = 3 \quad \beta = \frac{3}{8n}, n \neq 3
\]
Example: Initial Mesh
Add New Vertices
Moving New Vertices
Moving New Vertices
Moving Old Vertices
Moving Old Vertices
Extraordinary Vertices

\[\beta = \frac{3}{16}, n = 3 \quad \beta = \frac{3}{8n}, n \neq 3 \]
Extraordinary Vertices
Result from One Subdivision
Two Subdivisions
Three Subdivisions
Four Subdivisions
Loop Subdivision
Motivation: Deforming a Mesh
Splines

- Moving/placing every individual vertex when creating the initial geometry can be too time-intensive.
- Would rather move just one vertex and have the rest move smoothly along.
- Can be done with spline interpolation.
- Essentially what happens when you deform/sculpt objects in Blender.
Remember Linear Interpolation

- Suppose we have some important quantities at two points p_0 and p_1, and we want to interpolate the quantity inbetween:

$$f(u) = (1 - u)p_0 + up_1$$

where our parameter u is between [0, 1]

- Expressing this as a polynomial: $f(u) = a_0 + ua_1$

where $f(0) = p_0$ and $f(1) = p_1$ and the a's can be solved:

$$\begin{bmatrix} p_0 \\ p_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix}$$
Linear Not Smooth Enough

- Given a bunch of control points, we want to smoothly move the rest
- But if we only do linear interpolation, then we get sharp movement
- We want at least C^1 continuity
Given a bunch of control points, we want to smoothly move the rest. But if we only do linear interpolation, then we get sharp movement. We want at least C^1 continuity. Turns out cubics are enough for most applications, since C^1 & C^2 continuity. Many kinds of cubic splines.
Cardinal Cubic Splines

- 4 control points
- Derivative at the 2nd control point connects the 1st & 3rd
- Derivative at the 3rd control point connects the 2nd & 4th
- Construction of derivatives makes 2 consecutive curves continuous!
Cardinal Cubic Splines

- Interpolate 2nd & 3rd points
- Similar to what we did with linear interpolation, write the cubic polynomial:

\[
\begin{align*}
 f(u) &= a_0 + ua_1 + u^2a_2 + u^3a_3 \\
 f(0) &= p_i \\
 f(1) &= p_{i+1} \\
 f'(0) &= s(p_{i+1} - p_{i-1}) \\
 f'(1) &= s(p_{i+2} - p_i)
\end{align*}
\]
Cardinal Cubic Splines

- For those interested in the full derivation –

- We call the derived matrix the **basis matrix**

- The inverse is the called the **constraint matrix**

- Cardinal splines only one type of cubic splines

- Also B-splines & NURBS…

\[
\begin{align*}
 f(u) &= a_0 + ua_1 + u^2a_2 + u^3a_3 \\
 f(0) &= p_i \\
 f(1) &= p_{i+1} \\
 f'(0) &= s(p_{i+1} - p_{i-1}) \\
 f'(1) &= s(p_{i+2} - p_i) \\
\end{align*}
\]

\[
\begin{align*}
 p_{i-1} &= f(0) - \frac{1}{s} f'(0) \\
 p_i &= f(0) \\
 p_{i+1} &= f(1) \\
 p_{i+2} &= f(0) + \frac{1}{s} f'(1) \\
\end{align*}
\]

\[
B = C^{-1} = \begin{bmatrix}
 0 & 1 & 0 & 0 \\
 -s & 0 & s & 0 \\
 2s & -3 & 3 & -2s & -s \\
 -s & 2 & -s & s & 2 \\
\end{bmatrix}
\]

\[
p = Ca
\]
Interpolations are Local
Questions?
Transforming Objects

- We create objects in a reference space called **object space**
- After creating them, we place the objects into the **scene**, which we refer to as **world space**
- **Local vs. Global**
- Placing objects may require: **rotating**, **scaling** (resizing), **translating**
Local vs. Global
Transforming Objects

- We create objects in a reference space called object space.
- After creating them, we place the objects into the scene, which we refer to as world space.
- Local vs. Global
- Placing objects may require: rotating, scaling (resizing), translating

- First consider a single 3D point with \((x, y, z)\) coordinates.
- An object is just a bunch of points or vertices, so handling 1 point extends to handling the whole object.
Rotation

- In 2D, we rotate a point counter-clockwise about the origin of a Cartesian coordinate space via:

\[
\begin{pmatrix}
 x_{\text{new}} \\
 y_{\text{new}}
\end{pmatrix} = \begin{pmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
 x \\
 y
\end{pmatrix} = R(\theta)
\begin{pmatrix}
 x \\
 y
\end{pmatrix}
\]

\[
R_z(\theta) = \begin{pmatrix}
 \cos \theta & -\sin \theta & 0 \\
 \sin \theta & \cos \theta & 0 \\
 0 & 0 & 1
\end{pmatrix}
\]
Rotation

- For 3D, we have the rotation matrices for about the x, y, z axes respectively:

\[
R_x(\theta) = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{pmatrix}
\]

\[
R_y(\theta) = \begin{pmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{pmatrix}
\]

\[
R_z(\theta) = \begin{pmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
Rotation

- Note that rotations preserve shape:

- **Order of rotation matters!** Matrix multiplication is not commutative!
Scaling (aka Resizing)

- A scaling matrix has the form: \(S = \begin{pmatrix} s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & s_3 \end{pmatrix} \)
- Scaling matrices can both resize and shear/stretch objects:
Homogeneous Coordinates

- To represent translation with matrices, we need to use homogeneous coordinates.

- In general, the homogeneous coordinates of a point in 3D are:

 \[\vec{p} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \rightarrow \vec{p}_H = \begin{bmatrix} wx \\ wy \\ wz \\ w \end{bmatrix}, w \neq 0 \]

- Let the 4th component be 1, so we have: \[\vec{p}_H = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \]
Translation

● To translate a point some amount \(\vec{t} = \begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix} \) we use the 4x4 matrix:

\[
\begin{pmatrix}
I_{3x3} & t_1 \\ t_2 & t_2 \\ t_3 & t_3 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\ y \\ z \\ 1
\end{pmatrix} = \begin{pmatrix} \vec{x} + \vec{t} \end{pmatrix}
\]

with the identity: \(I_{3x3} = \begin{pmatrix}
1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1
\end{pmatrix} \)

● Intuitively, this should confirm with what you’d expect with translation:
 ○ moving a point by some vector simply adds that vector to the point to get the new location
Transforming in Homogeneous Coordinates

- Rotation and scaling matrices can also be expressed in homogeneous coordinates as:

\[
\begin{pmatrix}
M_{3x3} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} =
\begin{pmatrix}
M_{3x3} \vec{x} \\
1
\end{pmatrix}
\]

- Notice how we can simply take off the fourth component, the 1, once we’re done with our transformations and get our desired transformed vertex
Transforming in Homogeneous Coordinates

- In short, to transform a 3D object:
 - Convert all vertices in the object to homogeneous coordinates by simply making them 4D vectors with a fourth 1 component
 - Apply your transformation matrices for translation, rotation, scaling by left-multiplying each vertex in the order you want to apply the transforms
 - Convert all vertices back to 3D by taking off the fourth component once you’re done
Questions?