CS156: The Calculus of

Computation

Zohar Manna
Winter 2010

Chapter 2: First-Order Logic (FOL)

Page 1 of 35

First-Order Logic (FOL)

Also called Predicate Logic or Predicate Calculus

FOL Syntax
variables X, Y, Zye -
constants a,b,c,---
functions f,g,h,---
terms variables, constants or

n-ary function applied to n terms as arguments

a, x, f(a), g(x, b), f(g(x, f(b))); fgbeFbry))) 77
predicates p,q,ry -
atom T, L, or an n-ary predicate applied to n terms
literal atom or its negation

p(f(x),8(x,f(x))), —=p(f(x),8(x,f(x)))

Note: 0-ary functions: constants
O-ary predicates (propositional variables): P, Q,R,. ..
Page 2 of 35

quantifiers

existential quantifier ~ 3x. F[x]
“there exists an x such that F[x]"
Note: the dot notation (Ix.,Vx.) means the scope
of the quantifier should extend as far as possible.

universal quantifier Vx. F[x]
“for all x, F[x]"

FOL formula

literal,
application of logical connectives (-, V, A, —, <) to formulae,
or application of a quantifier to a formula

Page 3 of 35

Example: FOL formula

Vx. p(f(x),x) — (3y. p(f(g(x,y)),g(x,¥))) A a(x,f(x))
G

The scope of Vx is F.
The scope of dy is G.
The formula reads:
“for all x,
i p(F(x),x)
then there exists a y such that p(f(g(x,y)),g(x,y))
and g(x, f(x))"

Page 4 of 35

FOL Semantics

An interpretation / : (Dy, o) consists of:
» Domain D,
non-empty set of values or objects
cardinality |D;| deck of cards (finite)
integers (countably infinite)
reals (uncountably infinite)

» Assignment «;
» each variable x assigned value x; € D
» each n-ary function f assigned
f/ . Dln — D/
In particular, each constant a (0-ary function) assigned value
a € D/
» each n-ary predicate p assigned

pr: Df — {true, false}

In particular, each propositional variable P (0-ary predicate)
assigned truth value (true, false)

Page 5 of 35

Example: F: p(f(x,y),z) — p(y.&(z.x))
Interpretation / : (Dj,) with

DI:Z:{'”7_27_17071727'”}

f'_)—'_v g -, pH>a
af
) x- 13, y s 42, 2o 1

Therefore, we can write
F:13+42>1 — 42>1-13.

F is true under /.

Page 6 of 35

Semantics: Quantifiers
An x-variant of interpretation / : (D, cy) is an
interpretation J : (Dy, o) such that
> D/ = DJ
> «ayly] = ayly] for all symbols y, except possibly x

That is, I and J agree on everything except possibly
the value of x.

Denote by J: [<{x + v} the x-variant of / in which ay[x] =v
for some v € D;. Then

» | | Vx. F iffforallve Dy, I<{x—v} = F
» | = Ix. F iff there exists v e Dy, sit. [<a{x—v} = F

Page 7 of 35

Example: Consider
F: 3x. f(x) =g(x)
and the interpretation
I:(D:{o,e},)
in which
aj: {f(o)—o,f(e) — e g(o) — e, g(e) — o}.

The truth value of F under [is false; i.e., I[F] = false.

Page 8 of 35

Satisfiability and Validity |

F is satisfiable iff there exists [s.t. | | F
F is valid iff forall I, | &= F

F is valid iff =F is unsatisfiable

Semantic rules: given an interpretation / with domain Dy,
| EVx. Flx]

fi €D
I <{x— v} F[x] orany v I

I 7 Vx Pl for a fresh v € Dy
I <a{x— v} £ F[x] B
I 3x FIA for a fresh v € Dy
I a{x — v} E F[x] I
I = 3Ix. Flx]

f eD
Ta{x =V} £ Fl o vEs

Page 9 of 35

Contradiction rule

A contradiction exists if two variants of the original interpretation /
disagree on the truth value of an n-ary predicate p for a given
tuple of domain values:

J:l<a---E=p(si,...,sn)
K:l<a - = p(ty,...,tn) forie{l,.... n}, ays] = ak|t]
=1

Intuition: The variants J and K are constructed only through the
rules for quantification. Hence, the truth value of p on the given
tuple of domain values is already established by /. Therefore, the
disagreement between J and K on the truth value of p indicates a
problem with /.

Page 10 of 35

Example: s
F: (vx. p(x)) < (=3x. =p(x))

valid?

Suppose not. Then there is an [such that / [~ F (assumption).

First case:
la. I~ (Yx p(x))
— (—3x. =p(x)) assumption and «
2a. I E Vx. p(x) laand —
3a. I —3x. 2p(x) laand —
4a. I E 3x. —p(x) 3a and -
5a. I<a{x—v} E -p(x) 4a and 3, ve Dy fresh
6a. l<{x—v} K p(x) 5a and -
7a. l<{x—v} E px) 2aand V

6a and 7a are contradictory.
Page 11 of 35

Example (continued):

Second case:

1b.

2b.
3b.
4b.
5b.
6b.
7b.

(=3x. —p(x))
— (. p(x))
Vx. p(x)

—3Ix. =p(x)
p(x)

Ix. =p(x)
—p(x)

p(x)

4b and 7b are contradictory.
Both cases end in contradictions for arbitrary /. Thus F is valid.

assumption and «
1b and —

1b and —

2b and V, ve D; fresh
3b and =

5b and 3

6b and —

Page 12 of 35

Example: Prove
F: p(a) — 3x. p(x)

is valid.

Assume otherwise; i.e., F is false under interpretation / : (D;, ay):

1. I ¥~ F assumption
2. I = p(a) land —
3. I 3x. p(x) land —
4. l<a{x—wa]} ¥ p(x) 3 and 3

2 and 4 are contradictory. Thus, F is valid.

Page 13 of 35

Translations of English Sentences (famous theorems) into FOL

» The length of one side of a triangle is less than the sum of the
lengths of the other two sides

Vx,y,z. triangle(x, y,z) — length(x) < length(y)+length(z)
» Fermat’s Last Theorem.

Vn. integer(n) A n > 2
— Vx,y,z.
integer(x) A integer(y) A integer(z)
Ax>0Ay>0Az>0
— exp(x, n) + exp(y, n) # exp(z, n)

Page 14 of 35

Example: Show that
F: (Vx. p(x,x)) — (3x.Vy. p(x,y))
is invalid.

Find interpretation / such that F is false under /.

Choose D; ={0,1}
pr ={(0,0), (1,1)} i.e., pi(0,0) and p;(1,1) are true
pi1(0,1) and ps(1,0) are false
I[¥x. p(x, x)] = true and [[3x. Vy. p(x,y)] = false.

If we can find a falsifying interpretation for F, then F is invalid.

Is F: (Vx. p(x,x)) — (¥x. 3Jy. p(x,y)) valid?

Page 15 of 35

Substitution

Suppose we want to replace one term with another in a formula;
e.g., we want to rewrite

F: Vy. (p(x,y) — p(y,x))

as follows:
G: Vy. (p(a,y) — ply,a))

We call the mapping from x to a a substitution denoted as
o:{x— a}.
We write Fo for the formula G.

Another convenient notation is F[x] for a formula containing the
variable x and F[a] for Fo.

Page 16 of 35

Substitution

Definition (Substitution)

A substitution is a mapping from terms to terms; e.g.,
Ji{tl '—>51,...,t,,i—>5n}.

By Fo we denote the application of o to formula F;
i.e., the formula F where all occurrences of tq,...,t, are
replaced by sy, ..., s,.

For a formula named F[x] we write F[t] as shorthand for
F[x]{x — t}.

Page 17 of 35

Renaming

Replace x in Vx by x’ and all free occurrences! of x in G[x], the
scope of Vx, by x':

Vx. G[x] & ¥X. G[X].

Same for 3x:
Ix. G[x] & 33X G[X],

where x’ is a fresh variable.

Example (renaming):

(Vx. p(x) — 3x. q(x)) A r(x)
T Vx T 3x T free

replace by the equivalent formula

(Vy. p(y) — 3z.q(2)) A r(x)

!Note: these occurrences are free in G[x], not in Vx: G[x].

Page 18 of 35

Safe Substitution |

Care has to be taken in the presence of quantifiers:

[x] : Jy. y = Succ(x)
T free

What is Fly]?
We need to rename bound variables occurring in the substitution:
F[x] : 3y". y' = Succ(x)
Bound variable renaming does not change the models of a formula:
(Jy. y = Succ(x)) & (3y'. y' = Succ(x))
Then under safe substitution

Fly]: 3y". y' = Succ(y)
Page 19 of 35

Safe Substitution |l

Example: Consider the following formula and substitution:

F:(vx. p(x,y)) — q(f(y), x)
1 free]

Note that the only bound variable in F is the x in p(x, y). The
variables x and y are free everywhere else.

What is Fo? Use safe substitution!

1. Rename the bound x with a fresh name x’:
F' (X' p(X,y)) — a(f(y),x)

2. Fo: (VX. p(X',f(x))) — q(h(x,y),g(x))

Page 20 of 35

Safe Substitution Il

Proposition (Substitution of Equivalent Formulae)

o:{F+— G, -, Fo— Gp}
s.t. foreach i, F; & G;

If Fo is a safe substitution, then F < Fo.

Page 21 of 35

Semantic Tableaux (with Substitution)

We assume that there are infinitely many constant symbols.
The following rules are used for quantifiers:
I =Vx. Flx]
—TEFE
I = Vx. F[x]
I~ Flal
I E 3x. Flx]
I'l= Fla]
I = 3Ix. Fx]
I W= Flt]
The contradiction rule is similar to that of propositional logic:
I'Ep(ts, ..., tn)
I ¥ p(ti,..., tn)

IEL Page 22 of 35

for any term t

for a fresh constant a

for a fresh constant a

for any term t

Example: Show that
F:(3x. Vy. p(x,y)) — (¥x. Jy. p(y, x)) is valid.
Rename to F': (3x. Vy. p(x,y)) — (VX' 3y’. p(y/,x')).

Assume otherwise.

1. I ¥ F assumption

2. 1 E 3x.Vy.p(xy) land —

3. 1 VX 3y p(y, X)) land —

4. | = Vy.p(ay) 2, 3 (a fresh)
5.1 ¥ 3y p(y,b) 3, V (b fresh)

6. I E p(ab) 4,V (t:=b)

7. I ¥~ p(ab) 5 3 (t:=a)

8. I E L 6, 7 contradictory

Thus, the formula is valid.

Page 23 of 35

Example: Is F: (Vx. p(x,x)) — (3x. Vy. p(x,y)) valid?
Rename to F': (Vz. p(z,z)) — (3x. Vy. p(x,y))

Assume [falsifies F’ and apply semantic argument:

1. I ¥~ F assumption

2. | = Vz.p(zz2) land —

3. I ¥ 3x.Vy.p(x,y) land —

4. | = p(a1,a1) 2,V, a1 € Dy fresh
5. | [Vy.p(a1,y) 3, 3

6. I ¥ p(a1,a2) 5,V, ax € Dy fresh
7. 1 E p(a,a2) 2,V

8. I ¥ Vy.p(azy) 3,3

9. I ¥ p(az,a3) 8, V, a3 € Dy fresh

Page 24 of 35

No contradiction. Falsifying interpretation /:

true y =X,
Dy =N, pi(x,y)={ false y=x+1,

arbitrary otherwise.

Page 25 of 35

Formula Schemata
Formula

(vx. p(x) = (=3x. =p(x))

Formula Schema
Hi: (Vx. F) < (—3x. =F)
T place holder

Formula Schema (with side condition)
H : (Vx. F) < F provided x ¢ free(F)

Valid Formula Schema

H is valid iff it is valid for any FOL formula F;
obeying the side conditions.

Example: H; and Hy are valid.

Page 26 of 35

Substitution o of H

o:{Ff+— Gi,....,Fn— Gu}

mapping place holders F; of H to FOL formulae G;,
obeying the side conditions of H

Proposition (Formula Schema)

If His a valid formula schema, and
o is a substitution obeying H's side conditions,
then Ho is also valid.

Example:
H:(v¥x. F) < F provided x ¢ free(F) is valid.
o:{F~p(y)} obeys the side condition.

Therefore Ho : Vx. p(y) < p(y) is valid.

Page 27 of 35

Proving Validity of Formula Schemata |
Example: Prove validity of
H:(Vx. F) < F provided x ¢ free(F).

Proof by contradiction. Consider the two directions of « .

» First case

1. I E VVx.F assumption

2.1 ¥~ F assumption

3. 1 E F 1, V, since x ¢ free(F)
4. 1 L 2,3

Page 28 of 35

Proving Validity of Formula Schemata |l

» Second Case

1. I ¥ V¥x. F assumption

2.1 E F assumption

3. | | 3x.-F land-

4. | E -F 3, 3, since x & free(F)
5. | = L 2, 4

Hence, H is a valid formula schema.

Page 29 of 35

Normal Forms

1. Negation Normal Forms (NNF)
Apply the additional equivalences (left-to-right)

—Vx. F[x] & 3x. =F[x]

-3x. F[x] & Vx. =F[x]

when converting PL formulae into NNF.

Example: G : Vx. (3y. p(x,y) A p(x,z)) — Fw.p(x,w) .
L Vx. (3y. p(x,y) Ap(x,2)) — Tw. p(x,w)
2. ¥x. =(y. p(x,y) A p(x,z)) V Iw. p(x,w)
Fi— FHh & -FVFA
3. Vx. (Vy. =(p(x,y) A p(x,2))) V 3w. p(x, w)
—3x. F[x] & Vx. =F[x]
4. G :Vx. (Vy. =p(x,y) V —p(x,z)) VIw. p(x, w)

G’ in NNF and G’ & G.
Page 30 of 35

2. Prenex Normal Form (PNF)

All quantifiers appear at the beginning of the formula
Q1x1 -+ - QnXp. F[Xl, Tt ;Xn]

where Q; € {V, 3} and F is quantifier-free.

Every FOL formula F can be transformed to formula F’ in PNF
st. F/ & F:

» Write F in NNF,
» rename quantified variables to fresh names, and

» move all quantifiers to the front. Be careful!

Page 31 of 35

Example: Find equivalent PNF of

F: Vx. =(3y. p(x,y) A p(x,2)) V 3y. p(x,y)
T to the end of the formula

1. Write F in NNF

Fi: Vx. (Vy. =p(x,y) V —p(x,2)) V Jy. p(x,y)
2. Rename quantified variables to fresh names

Fao: Vx. (Vy. =p(x,y) V =p(x,2)) V Iw. p(x,w)
TBoth are in the scope of Vx!

3. Remove all quantifiers to produce quantifier-free formula

F3: =p(x,y)V —=p(x,z) V p(x, w)

Page 32 of 35

4. Add the quantifiers before F3
Fa: ¥x.Vy. 3w. =p(x,y) V —p(x,z) V p(x, w)
Alternately,
Fy: ¥x. 3w. Vy. =p(x,y) V =p(x,2) V p(x, w)

Note: In F;, Vy is in the scope of Vx, therefore the order of
quantifiers must be ---Vx---Vy---.

Also, dw is in the scope of Vx, therefore the order of the
quantifiers must be ---Vx---Jw - --

Fi <& Fand F, & F

Note: However, possibly, G < F and G’ < F, for
G : Vy. 3Iw. Vx. =p(x,y) V =p(x,z) V p(x, w)
G':3w. Vx. Vy. ---

Page 33 of 35

Decidability of FOL

» FOL is undecidable (Turing & Church)
There does not exist an algorithm for deciding if a FOL
formula F is {valid, satisfiable}; i.e., that always halts and
says “yes" if F is {valid, satisfiable} or “no” if F is {invalid,
unsatisfiable}.

» FOL is semi-decidable
There is a procedure that always halts and says “yes” if F is
{valid, unsatisfiable}, but may not halt if F is {invalid,
satisfiable}.

On the other hand,

» PL is decidable
There does exist an algorithm for deciding if a PL formula F
is {valid, satisfiable}; e.g., the truth-table procedure.

Page 34 of 35

Semantic Argument Method

To show FOL formula F is valid, assume | [~ F and derive a
contradiction / = L in all branches

» Method is sound
If every branch of a semantic argument proof reaches | = L,
then F is valid

» Method is complete
Each valid formula F has a semantic argument proof in which
every branch reaches | | L

Page 35 of 35

