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Decision Procedures for Quantifier-free Fragments

For theory T with signature ¥ and axioms A, decide if

Flxi,...,xa] or 3xi,...,xn. F[x1,...,xs] is T-satisfiable
Decide if
Flxi,...,xn] or ¥xi,...,%p. F[x1,...,x5] is T-valid
where F is quantifier-free and free(F) = {x1,..., %}

Note: no quantifier alternations
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Conjunctive Quantifier-free Fragment

We consider only conjunctive quantifier-free X-formulae, i.e.,
conjunctions of X-literals (X-atoms or negations of X-atoms).

For given arbitrary quantifier-free ¥-formula F, convert it into
DNF X-formula

FLvV...VF

where each F; conjunctive.

F is T-satisfiable iff at least one F; is T-satisfiable.
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Preliminary Concepts

Vector
variable n-vector n-vector 3 € Q" transpose
X1 ai
X = 3= al=a an |
Xn dn
Matrix
m X n-matrix
AeQmxn transpose column -~
alj
ai1- - ain ail---ami
A= Do AT = SR />3i1"'3ij"'
dml** *dmn din® " *dmn row
i amj
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din




Multiplication |

vector-vector

Multiplication Il

matrix-matrix

by .
ETE:[a]_"'an] :Za’-bi ajk v bk_] — pU
by | 7 5
. A B P
matrix-vector
ayy - ain x1 ST ayixi where
AX = — by .
aml - amn Xn 27:1 amiXi pPij = 5lbj = [ aj1 din :| = Zaikbkj
k=1
bnj
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Specia| Vectors and Matrices Vector Space - set S of vectors closed under addition and scaling
o | £ 0 of vectors. That is,
- t .
1. ::ztz: gfcoll;mn) or s ifvy,...,vk €S then MANVi+- -4+ AXVkES
B " for A1,..., Ap €Q
Thus T x=) x
P Linear Equation
1 0 F:Ax = b
I = identity matrix (n x n) \
0 1 m X n-matrix variable n-vector m-vector
Thus IA = Al = A, for n x n matrix A. represents the 3 o-formula
B 0 7] F:(311X1+"'+alnxn:bl)/\"'/\(amlxl+"'+amnxn:bm)
Gaussian Elimination
unit vector e, = | 1 t+— ith (Note: matrix indices start at 1) Find X s.t. Ax = b by elementary row operations
» Swap two rows
» Multiply a row by a nonzero scalar
0 » Add one row to another
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Example 4 |

Solve
312 X1 6
1 01 Xy | =
2 21 X3 2
Construct the augmented matrix
3126
1 0 11
2 2 1|2

Apply the row operations as follows:
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Example 4 1l

1. Add —2a; + 43, to 33
3 12| 6
1 0 1
0 0 1|-6

2. Add —31 + 23, to @
3 1 2| 6
0 -1 1|-3
0 0 1]|-6

This augmented matrix is in triangular form.

Page 10 of 125

Example 4 Il
Solving

X3=—6
—xo+x3=—-3 = xp=-3
31 +X +2x3=6 = x1 =17

The solutionisx=[7 -3 —6 }T
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Inverse Matrix

A1 is the inverse matrix of square matrix A if
AATL = ATTA =

Square matrix A is nonsingular (invertible) if its inverse A~1 exists.

How to compute A~1 of A?
[A]1]

[ A
elementary
row operations
How to compute kth column of A=1?
Solve Ay = ¢, i.e.

_ 0 -
solve triangular matrix
A l | —m——— y=...

: solve using (kth column of A™1)
(') eIementa_ry
row operations
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Linear Inequalities |

Polyhedral Space

For m x n-matrix A, variable n-vector X, and m-vector b, the
> g-formula

m
G:AYST), i.e., G:/\a;1X1+---+a;an§bi
i=1

describes a subset (space) of Q", called a polyhedron.
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Linear Inequalities Il
Convex Space

An n-dimensional space S C R” is convex if for all pairs of points
Vi, €S,

M+ (1-ANwneS forAel0,1].

Ax < b defines a convex space. For suppose Av; < b and
Avp < b; then also

AAv + (1 = N)Ww) <b.
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Linear Inequalities |
Vertex

Consider m x n-matrix A where m > n.

An n-vector v is a vertex of Ax < b if there is
» a nonsingular n x n-submatrix Ag of A and
» corresponding n-subvector by of b
such that ~
AoV = byg .

The rows ag, in Ag and corresponding values by, of by are the set
of defining constraints of the vertex v.

Two vertices are adjacent if they have defining constraint sets
that differ in only one constraint.
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Example |

Consider the linear inequality

-1 0 0 O 0
0 -1 0 0 0
0 0 -1 0 0
0 0 0 -1 < |o

21
1 1 0 0 3
22
1 -1 0 |— = 2
o 1 0 -1] ~ 2
! g | 2
A b

Ais a 7 X 4-matrix, b is a 7-vector, and
X is a variable 4-vector representing the four variables {x,y, z1, z>}.
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Example I

v=[210 O]T is a vertex of the constraints. For the nonsingular
submatrix Ag (rows 3, 4, 5, 6 of A: defining constraints of V),

Example Il

Another vertex: Vo =1[0 0 0 O}T, since

-1 0 0 0
00 -1 O 2 0 _1 o| |o
Sl B I I 0 0 -1 o||o| |o
11 0 0 0 3 0 0 0 -1 0 0
1 0 -1 0 0 2 N ~~ IN—— =
\ ~ A N’ AO VO bO
Ao v bo
(rows 1,2,3,4 of A: defining constraints of Vo)
Note: Vv and vg are not adjacent; they are different in 2 defining
constraints.
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Linear Programming | Linear Programming Il
Optimization Problem Solution: B
Find vertex v* satisfying AX < b and maximizing ' x.
max <C'x ... objective function That is,
subject to AV* < b and
Ax < b .. constraints ¢c'v* is maximal: €'v* > ¢'u for all T satisfying Au < b
» If Ax < b is unsatisfiable,
Maxcim n then maximum is —oo
aximize Zl Cixi » It's possible that the maximum is unbounded,
1= . .
an - a1 X1 by then maximum is oo
n
subject to <
dml *°° Aamn Xn bm
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Example: Consider optimization problem:

subject to
[ -1 0 © [ 0 ]
0 -1 0 0
0 0 -1 0
0 0 0 -1 < 0
7
1 1 0 0 3
z
1 0 -1 0| —— 2
0 1 0 -1 X 2
L i L <
A b
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Example (cont):

The objective function is
(x—z)+(y—2).
The constraints are equivalent to the > g-formula

x>20ANy>20AZz1>20A 22>0
AX+Yy<3AXx—zn<2ANy—2z < 2
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Example: Linear Programming |
A company is producing two different products using three
machines A, B, and C.
» Product 1 needs A for one, and B for one hour.
» Product 2 needs A for two, B for one, and C for three hours.
» Product 1 can be sold for $300; Product 2 for $500.

» Monthly availability of machines:
A: 170 hours, B: 150 hours, C 180 hours.
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Example: Linear Programming ||

Let x; and x» denote the amount of product 1 and product 2, resp.
We want to optimize 300x; + 500x, subject to:

1x1 + 2x2 < 170 Machine (A)
1x; + 1xo < 150 Machine (B)
0x1 + 3x2 < 180 Machine (C)

x1>0AXx>0
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Example: Linear Programming IlI

A

X2
x1 + x2 < 150

X1+ 2x <170

3x2 <180

> 1
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Example: Linear Programming IV

Optimize 300x; + 500x>:
X2 AN

$49000
45000

$30000

S
?

X1

Page 26 of 125

Duality Theorem

For m x n-matrix A, m-vector b and n-vector C:

if the constraints are satisfiable.

That is,

maximizing the function c'xover Ax< b, x>0
(the primal form of the optimization problem)

is equivalent to
minimizing the function ET)_/ over ATy >¢,y>0
(the dual form of the optimization problem)

By convention: when Ax < b A X > 0 unsatisfiable, the max is
—oo and the min is oo.
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Figure: Visualization of the duality theorem

The region labeled Ax < b satisfies the inequality. The objective
function €'x is represented by the dashed line. Its value increases
in the direction of the arrow labeled 5 and decreases in the
direction of the arrow labeled 6. Page 28 of 125



Example: A Dual Problem The Simplex Method
What is the value of a machine hour? Consider linear program
Let ya, ¥B, yc be the values of machine A, B, and C. T
The value of the machine hours to produce something > the value M : max c X
of the product (> if that product should not be produced). subject to G : Ax < b
ya>0 Ayg>0 A yc>0 The simplex method solves the linear program in two main steps:
lya + 1yg + Oyc > 300 1. Obtain an initial vertex 7; of AX < b.
2ya + lyg + 3yc > 500 2. lteratively traverse the vertices of Ax < b, beginning at vy, in
search of the vertex that maximizes ¢'x. On each iteration
We minimize the value 170y4 + 150y -+ 180y to get the value of determine if Tv; > €'/ for the vertices v/ adjacent to ¥;:
a machine hour: » If not, move to one of the adjacent vertices v/ with a greater
objective value.
ya=200 A yg =100 A yc =0 » If so, halt and report ¥; as the optimum point with value ¢T¥;.
170y + 150yg + 180y = 49000 The final vertex v; is a local optimum since its adjacent vertices
have lesser objective values. But because the space defined by
This is the dual problem. It has the same optimal value. Ax < b is convex, v; is also the global optimum: it is the highest
value attained by any point that satisfies the constraints.
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Example Example
X2 X2
30000
o
0 0
® X1 ¢ X1
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Example Example

X2 X2
.30000 45000 45000
49000
X1 X1
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Example How do we use optimization to determine satisfiability?
X2

We are not interested in an optimal solution X such that
F:Ax<b:
we want some solution. However, this hard to find.

Idea: Transform F into an optimization problem with an initial
(not-optimal) vertex v and a desired optimum vg.

Apply the Simplex Method until an optimal vertex v* is obtained.
The optimum value for v* is vg iff F : Ax < b is satisfiable.

The solution can be computed from the optimal solution X of the

49000 optimization problem.

X1
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Outline of the Algorithm |

Determine if > g-formula

m
F - /\a;1x1+...+a,-,,x,,§bi
i=1

¢
A /\Oé11X1+---+Oéian < i
i=1

is satisfiable.

Note: Equations
ap X1+ ...+ ainxn = b;

are allowed; break them into two inequalities:
aj1x1 + ...+ ainxn

—aj1X1 + ...+ —ajnXn
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Outline of the Algorithm Il
F is Tg-equivalent to the > g-formula

m
F' - /\a,-lx1+...+a,-,,xn§b,-
i=1

¢

A /\ai1X1+~~~+Oéian+ZSﬁi
i=1

AN z>0
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Outline of the Algorithm Il
To decide the Tg-satisfiability of F’, solve the linear program

max z
subject to

m
/\ aixy+...+anpx, < by
i=1

¢
/\Oéi1X1+---+aian+Z < B
i=1

F' is Tg-satisfiable iff the optimum is positive.

Page 39 of 125

Outline of the Algorithm IV

When F does not contain any strict inequality literals, the
corresponding linear program

max 1
subject to

m
/\ ajixy + ...+ ainxp < bi
i=1

has optimum  —oo iff the constraints are Tg-unsatisfiable,
1 iff the constraints are Tg-satisfiable.
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