
The Calculus of Computation
Zohar Manna
Spring 2009

Lecturer:
Zohar Manna (manna@cs.stanford.edu)

Page 1 of 53

Calculus of Computation?

It is reasonable to hope that the relationship between
computation and mathematical logic will be as fruitful
in the next century as that between analysis and physics
in the last. The development of this relationship
demands a concern for both applications and
mathematical elegance.

John McCarthy
A Basis for a Mathematical Theory of Computation, 1963

Page 2 of 53

Page 3 of 53

Assignment #1

I 1.1 e, f [10 points each]

I 1.2 s, x [10 points each]

I 1.3 (note typo: the last ∨ should be a ∧) [30 points]

I 1.5 d [30 points]

Page 4 of 53

Textbook

The Calculus of Computation:
Decision Procedures with
Applications to Verification

by
Aaron Bradley
Zohar Manna

Springer 2007

There are two copies in CS-Math Library and you could also use
socrates.stanford.edu to read the book according to its policy.

Page 5 of 53

socrates.stanford.edu

Page 6 of 53

Topics: Overview

1. First-Order logic

2. Specification and verification

3. Satisfiability decision procedures

Page 7 of 53

Part I: Foundations

1. Propositional Logic

2. First-Order Logic

3. First-Order Theories

4. Induction

5. Program Correctness: Mechanics
Inductive assertion method, Ranking function method

Page 8 of 53

Part II: Decision Procedures

7. Quantified Linear Arithmetic
Quantifier elimination for integers and rationals

8. Quantifier-Free Linear Arithmetic
Linear programming for rationals

9. Quantifier-Free Equality and Data Structures

10. Combining Decision Procedures
Nelson-Oppen combination method

11. Arrays
More than quantifier-free fragment

Page 9 of 53

The Calculus of Computation
Zohar Manna
Spring 2009

Motivation

Page 10 of 53

Motivation I

Decision Procedures are algorithms to decide formulae.
These formulae can arise

I in software verification.

I in hardware verification

Consider the following program:

for

@ ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j] = e)

(int i := `; i ≤ u; i := i + 1) {
if (a[i] = e) rv := true;

}

How can we decide whether the formula is a loop invariant?

Page 11 of 53

Motivation II
Prove:

assume ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j] = e)

assume i ≤ u

assume a[i] = e

rv := true;

i := i + 1

@ ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j] = e)

Page 12 of 53

Motivation III

assume ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j] = e)

assume i ≤ u

assume a[i] 6= e

i := i + 1

@ ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j] = e)

A Hoare triple {P} S {Q} holds, iff

P → wp(S ,Q)

(wp denotes “weakest precondition”)

Page 13 of 53

Motivation IV
For assignments wp is computed by substitution:

assume ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j] = e)

assume i ≤ u

assume a[i] = e

rv := true;

i := i + 1

@ ` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j] = e)

Substituting > for rv and i + 1 for i , the postcondition (denoted by
the @ symbol) holds if and only if:

` ≤ i ≤ u ∧ (rv ↔ ∃j . ` ≤ j < i ∧ a[j] = e) ∧ i ≤ u ∧ a[i] = e

→ ` ≤ i + 1 ≤ u ∧ (> ↔ ∃j . ` ≤ j < i + 1 ∧ a[j] = e)

Page 14 of 53

Motivation V
We need an algorithm that decides whether this formula holds. If
the formula does not hold, the algorithm should give a
counterexample; e.g.,

` = 0, i = 1, u = 1, rv = false, a[0] = 0, a[1] = 1, e = 1.

We will discuss such algorithms in later lectures.

Page 15 of 53

The Calculus of Computation
Zohar Manna
Spring 2009

Chapter 1: Propositional Logic (PL)

Page 16 of 53

Propositional Logic (PL)

PL Syntax

Atom truth symbols > (“true”) and ⊥ (“false”)

propositional variables P,Q,R,P1,Q1,R1, . . .

Literal atom α or its negation ¬α
Formula literal or application of a

logical connective to formulae F ,F1,F2

¬F “not” (negation)
F1 ∧ F2 “and” (conjunction)
F1 ∨ F2 “or” (disjunction)
F1 → F2 “implies” (implication)
F1 ↔ F2 “if and only if” (iff)

Page 17 of 53

Example:

formula F : (P ∧ Q) → (> ∨ ¬Q)
atoms: P, Q, >
literals: P, Q, >, ¬Q
subformulae: P, Q, >, ¬Q, P ∧ Q, > ∨ ¬Q, F
abbreviation

F : P ∧ Q → >∨ ¬Q

Page 18 of 53

PL Semantics (meaning of PL)
Formula F + Interpretation I = Truth value

(true, false)
Interpretation

I : {P 7→ true,Q 7→ false, · · · }

Evaluation of F under I :
F ¬F

0 1
1 0

where 0 corresponds to value false
1 true

F1 F2 F1 ∧ F2 F1 ∨ F2 F1 → F2 F1 ↔ F2

0 0 0 0 1 1

0 1 0 1 1 0

1 0 0 1 0 0

1 1 1 1 1 1

Page 19 of 53

Example:

F : P ∧ Q → P ∨ ¬Q
I : {P 7→ true,Q 7→ false} i.e., I [P] = true, I [Q] = false

P Q ¬Q P ∧ Q P ∨ ¬Q F

1 0 1 0 1 1

1 = true 0 = false

F evaluates to true under I ; i.e., I [F] = true.

Page 20 of 53

Inductive Definition of PL’s Semantics
I |= F if F evaluates to true under I
I 6|= F false

Base Case:
I |= > I 6|= ⊥
I |= P iff I [P] = true; i.e., P is true under I
I 6|= P iff I [P] = false

Inductive Case:
I |= ¬F iff I 6|= F
I |= F1 ∧ F2 iff I |= F1 and I |= F2

I |= F1 ∨ F2 iff I |= F1 or I |= F2 (or both)
I |= F1 → F2 iff I |= F1 implies I |= F2

I |= F1 ↔ F2 iff, I |= F1 and I |= F2,
or I 6|= F1 and I 6|= F2

Note:
I |= F1 → F2 iff I 6|= F1 or I |= F2.
I 6|= F1 → F2 iff I |= F1 and I 6|= F2.
I 6|= F1 ∨ F2 iff I 6|= F1 and I 6|= F2. Page 21 of 53

Example of Inductive Reasoning:

F : P ∧ Q → P ∨ ¬Q

I : {P 7→ true, Q 7→ false}

1. I |= P since I [P] = true

2. I 6|= Q since I [Q] = false

3. I |= ¬Q by 2 and ¬
4. I 6|= P ∧ Q by 2 and ∧
5. I |= P ∨ ¬Q by 1 and ∨
6. I |= F by 4 and → Why?

Thus, F is true under I .
Note: steps 1, 3, and 5 are nonessential.

Page 22 of 53

Satisfiability and Validity

F satisfiable iff there exists an interpretation I such that I |= F .
F valid iff for all interpretations I , I |= F .

F is valid iff ¬F is unsatisfiable

Goal: devise an algorithm to decide validity or unsatisfiability of
formula F .

Page 23 of 53

Method 1: Truth Tables

Example F : P ∧ Q → P ∨ ¬Q

P Q P ∧ Q ¬Q P ∨ ¬Q F

0 0 0 1 1 1
0 1 0 0 0 1

1 0 0 1 1 1
1 1 1 0 1 1

Thus F is valid.

Example F : P ∨ Q → P ∧ Q

P Q P ∨ Q P ∧ Q F
0 0 0 0 1 ← satisfying I
0 1 1 0 0 ← falsifying I
1 0 1 0 0
1 1 1 1 1

Thus F is satisfiable, but invalid.
Page 24 of 53

Method 2: Semantic Argument

I Assume F is not valid and I a falsifying interpretation:
I 6|= F

I Apply proof rules.

I If no contradiction reached and no more rules applicable,
F is invalid.

I If in every branch of proof a contradiction reached,
F is valid.

Page 25 of 53

Proof Rules for Semantic Arguments I

I |= ¬F

I 6|= F

I 6|= ¬F

I |= F

I |= F ∧ G

I |= F

I |= G
←and

I 6|= F ∧ G

I 6|= F | I 6|= G
↖or

I |= F ∨ G

I |= F | I |= G

I 6|= F ∨ G

I 6|= F

I 6|= G

Page 26 of 53

Proof Rules for Semantic Arguments II

I |= F → G

I 6|= F | I |= G

I 6|= F → G

I |= F

I 6|= G

I |= F ↔ G

I |= F ∧ G | I 6|= F ∨ G

I 6|= F ↔ G

I |= F ∧ ¬G | I |= ¬F ∧ G

I |= F

I 6|= F

I |= ⊥

Page 27 of 53

Example: Prove

F : P ∧ Q → P ∨ ¬Q is valid.

Let’s assume that F is not valid and that I is a falsifying
interpretation.

1. I 6|= P ∧ Q → P ∨ ¬Q assumption

2. I |= P ∧ Q 1 and →
3. I 6|= P ∨ ¬Q 1 and →
4. I |= P 2 and ∧
5. I 6|= P 3 and ∨
6. I |= ⊥ 4 and 5 are contradictory

Thus F is valid.

Page 28 of 53

Example: Prove

F : (P → Q) ∧ (Q → R) → (P → R) is valid.

Let’s assume that F is not valid.

1. I 6|= F assumption

2. I |= (P → Q) ∧ (Q → R) 1 and →

3. I 6|= P → R 1 and →

4. I |= P 3 and →

5. I 6|= R 3 and →

6. I |= P → Q 2 and ∧

7. I |= Q → R 2 and ∧

Page 29 of 53

6. I |= P → Q 2 and ∧

7. I |= Q → R 2 and ∧

8a. I 6|= P 6 and → (case a)

9a. I |= ⊥ 4 and 8

8b. I |= Q 6 and → (case b)

9ba. I 6|= Q 7 and → (subcase ba)

10ba. I |= ⊥ 8b and 9ba

9bb. I |= R 7 and → (subcase bb)

10bb. I |= ⊥ 5 and 9bb

9b. I |= ⊥ 10ba and 10bb

8. I |= ⊥ 9a and 9b

Our assumption is contradictory in all cases, so F is valid.
Page 30 of 53

Example 3: Is
F : P ∨ Q → P ∧ Q

valid? Assume F is not valid:

1. I 6|= P ∨ Q → P ∧ Q assumption

2. I |= P ∨ Q 1 and →

3. I 6|= P ∧ Q 1 and →

4a. I |= P 2, ∨ (case a)

5aa. I 6|= P 3, ∨ (subcase aa)

6aa. I |= ⊥ 4a, 5aa

5ab. I 6|= Q 3, ∨ (subcase ab)

6ab. ?

5a. ?

Page 31 of 53

4b. I |= Q 2, ∨ (case b)

5ba. I 6|= P 3, ∨ (subcase ba)

6ba. ?

5bb. I 6|= Q 3, ∨ (subcase bb)

6bb. I |= ⊥ 4b, 5bb

5b. ?

5. ?

We cannot derive a contradiction in both cases (4a and 4b), so we
cannot prove that F is valid. To demonstrate that F is not valid,
however, we must find a falsifying interpretation (here are two):

I1 : {P 7→ true, Q 7→ false} I2 : {Q 7→ true, P 7→ false}

Note: we have to derive a contradiction in all cases for F to be
valid!

Page 32 of 53

Equivalence

F1 and F2 are equivalent (F1 ⇔ F2)

iff for all interpretations I , I |= F1 ↔ F2

To prove F1 ⇔ F2, show F1 ↔ F2 is valid, that is,
both F1 → F2 and F2 → F1 are valid.

F1 entails F2 (F1 ⇒ F2)

iff for all interpretations I , I |= F1 → F2

Note: F1 ⇔ F2 and F1 ⇒ F2 are not formulae!!

Page 33 of 53

Example: Show
P → Q ⇔ ¬P ∨ Q

i.e.
F : (P → Q)↔ (¬P ∨ Q) is valid .

Assume F is not valid, then we have two cases:

Case a: I 2 ¬P ∨ Q,

I � P → Q

Case b: I � ¬P ∨ Q,

I 2 P → Q

Derive contradictions in both cases.

Page 34 of 53

Normal Forms

1. Negation Normal Form (NNF)

¬,∧,∨ are the only boolean connectives allowed.

Negations may occur only in literals of the form ¬P.

To transform F into equivalent F ′ in NNF, apply the following
template equivalences recursively (and left-to-right):

¬¬F1 ⇔ F1 ¬> ⇔ ⊥ ¬⊥ ⇔ >

¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2

¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

}
De Morgan’s Law

F1 → F2 ⇔ ¬F1 ∨ F2

F1 ↔ F2 ⇔ (F1 → F2) ∧ (F2 → F1)

“Complete” syntactic restriction: every F has an equivalent
F ′ in NNF.

Page 35 of 53

Example: Convert

F : ¬(P → ¬(P ∧ Q))

to NNF.

F ′ : ¬(¬P ∨ ¬(P ∧ Q)) →

F ′′ : ¬¬P ∧ ¬¬(P ∧ Q) De Morgan’s Law

F ′′′ : P ∧ P ∧ Q ¬¬

F ′′′ is equivalent to F (F ′′′ ⇔ F) and is in NNF.

Page 36 of 53

2. Disjunctive Normal Form (DNF)

Disjunction of conjunctions of literals∨
i

∧
j

`i ,j for literals `i ,j

To convert F into equivalent F ′ in DNF,
transform F into NNF and then
use the following template equivalences (left-to-right):

(F1 ∨ F2) ∧ F3 ⇔ (F1 ∧ F3) ∨ (F2 ∧ F3)

F1 ∧ (F2 ∨ F3) ⇔ (F1 ∧ F2) ∨ (F1 ∧ F3)

}
dist

Note: formulae can grow exponentially as the distributivity
laws are applied.

Page 37 of 53

Example: Convert

F : (Q1 ∨ ¬¬Q2) ∧ (¬R1 → R2)

into equivalent DNF

F ′ : (Q1 ∨ Q2) ∧ (R1 ∨ R2) in NNF

F ′′ : (Q1 ∧ (R1 ∨ R2)) ∨ (Q2 ∧ (R1 ∨ R2)) dist

F ′′′ : (Q1 ∧ R1) ∨ (Q1 ∧ R2) ∨ (Q2 ∧ R1) ∨ (Q2 ∧ R2) dist

F ′′′ is equivalent to F (F ′′′ ⇔ F) and is in DNF.

Page 38 of 53

3. Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals∧
i

∨
j

`i ,j for literals `i ,j

To convert F into equivalent F ′ in CNF,
transform F into NNF and then
use the following template equivalences (left-to-right):

(F1 ∧ F2) ∨ F3 ⇔ (F1 ∨ F3) ∧ (F2 ∨ F3)

F1 ∨ (F2 ∧ F3) ⇔ (F1 ∨ F2) ∧ (F1 ∨ F3)

A disjunction of literals is called a clause.

Page 39 of 53

Example: Convert
F : P ↔ (Q → R)

to an equivalent formula F ′ in CNF.

First get rid of ↔ :

F1 : (P → (Q → R)) ∧ ((Q → R) → P)

Now replace → with ∨:

F2 : (¬P ∨ (¬Q ∨ R)) ∧ (¬(¬Q ∨ R) ∨ P)

Drop unnecessary parentheses and apply De Morgan’s Law:

F3 : (¬P ∨ ¬Q ∨ R) ∧ ((¬¬Q ∧ ¬R) ∨ P)

Simplify double negation (now in NNF):

F4 : (¬P ∨ ¬Q ∨ R) ∧ ((Q ∧ ¬R) ∨ P)

Distribute disjunction over conjunction (now in CNF):

F ′ : (¬P ∨ ¬Q ∨ R) ∧ (Q ∨ P) ∧ (¬R ∨ P)

Page 40 of 53

Equisatisfiability

Definition
F and F ′ are equisatisfiable, iff

F is satisfiable if and only if F ′ is satisfiable

Every formula is equisatifiable to either > or ⊥.

Goal: Decide satisfiability of PL formula F

Step 1: Convert F to equisatisfiable formula F ′ in CNF

Step 2: Decide satisfiability of formula F ′ in CNF

Page 41 of 53

Step 1: Convert F to equisatisfiable formula F ′ in CNF I

There is an efficient conversion of F to F ′ where

I F ′ is in CNF and

I F and F ′ are equisatisfiable

Note: efficient means polynomial in the size of F .

Basic Idea:

I Introduce a new variable PG for every subformula G of F ,
unless G is already an atom.

Page 42 of 53

Step 1: Convert F to equisatisfiable formula F ′ in CNF II
I For each subformula

G : G1 ◦ G2,

produce a small formula

PG ↔ PG1 ◦ PG2 .

Here ◦ denotes an arbitrary connective (¬, ∨, ∧, →, ↔); if
the connective is ¬, G1 should be ignored.

Page 43 of 53

Step 1: Convert F to equisatisfiable formula F ′ in CNF III

Figure: Parse tree for F : P ∨ Q → ¬(P ∧ ¬R)

Page 44 of 53

Step 1: Convert F to equisatisfiable formula F ′ in CNF IV
I Convert each of these (small) formulae separately to an

equivalent CNF formula

CNF(PG ↔ PG1 ◦ PG2) .

Let SF be the set of all non-atom subformulae G of F (including F
itself). The formula

PF ∧
∧

G∈SF

CNF (PG ↔ PG1 ◦ PG2)

is equisatisfiable to F . (Why?)

The number of subformulae is linear in the size of F .
The time to convert one small formula is constant!

Page 45 of 53

Example: CNF I

Convert
F : P ∨ Q → P ∧ ¬R

to an equisatisfiable formula in CNF.

Introduce new variables: PF , PP∨Q , PP∧¬R , P¬R .

Create new formulae and convert them to equivalent formulae in
CNF separately:

I F1 = CNF(PF ↔ (PP∨Q → PP∧¬R)):

(¬PF ∨ ¬PP∨Q ∨ PP∧¬R) ∧ (PF ∨ PP∨Q) ∧ (PF ∨ ¬PP∧¬R)

I F2 = CNF(PP∨Q ↔ P ∨ Q):

(¬PP∨Q ∨ P ∨ Q) ∧ (PP∨Q ∨ ¬P) ∧ (PP∨Q ∨ ¬Q)

Page 46 of 53

Example: CNF II
I F3 = CNF(PP∧¬R ↔ P ∧ P¬R):

(¬PP∧¬R ∨ P) ∧ (¬PP∧¬R ∨ P¬R) ∧ (PP∧¬R ∨ ¬P ∨ ¬P¬R)

I F4 = CNF(P¬R ↔ ¬R):

(¬P¬R ∨ ¬R) ∧ (P¬R ∨ R)

PF ∧ F1 ∧ F2 ∧ F3 ∧ F4 is in CNF and equisatisfiable to F .

Page 47 of 53

Step 2: Decide the satisfiability of PL formula F ′ in CNF

Boolean Constraint Propagation (BCP)

If a clause contains one literal `,

Set ` to >: · · · ∧ ���
>
` ∧ · · ·

Remove all clauses containing `: · · · ∧(((((
(((· · · ∨ ` ∨ · · ·) ∧ · · ·

Remove ¬` in all clauses: · · · ∧ (· · · ∨��¬` ∨ · · ·) ∧ · · ·
based on the unit resolution

` ¬` ∨ C ← clause

C

Pure Literal Propagation (PLP)

If P occurs only positive (without negation), set it to >.
If P occurs only negative set it to ⊥.
Then do the simplifications as in Boolean Constraint Propagation

Page 48 of 53

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Decides the satisfiability of PL formulae in CNF

Decision Procedure DPLL: Given F in CNF

let rec dpll F =

let F ′ = bcp F in

let F ′′ = plp F ′ in

if F ′′ = > then true

else if F ′′ = ⊥ then false

else

let P = choose vars(F ′′) in

(dpll F ′′{P 7→ >}) ∨ (dpll F ′′{P 7→ ⊥})

Page 49 of 53

Simplification

Simplify according to the template equivalences (left-to-right)
[exercise 1.2]

¬⊥ ⇔ > ¬> ⇔ ⊥ ¬¬F ⇔ F

F ∧ > ⇔ F F ∧ ⊥ ⇔ ⊥ · · ·
F ∨ > ⇔ > F ∨ ⊥ ⇔ F · · ·

Page 50 of 53

Example I

Consider

F : (¬P ∨ Q ∨ R) ∧ (¬Q ∨ R) ∧ (¬Q ∨ ¬R) ∧ (P ∨ ¬Q ∨ ¬R).

Branching on Q

On the first branch, we have

F{Q 7→ >} : (R) ∧ (¬R) ∧ (P ∨ ¬R).

By unit resolution,
R (¬R)

⊥
,

so F{Q 7→ >} = ⊥ ⇒ false.

Page 51 of 53

Example II
Recall

F : (¬P ∨ Q ∨ R) ∧ (¬Q ∨ R) ∧ (¬Q ∨ ¬R) ∧ (P ∨ ¬Q ∨ ¬R).

On the other branch, we have

F{Q 7→ ⊥} : (¬P ∨ R).

Furthermore, by PLP,

F{Q 7→ ⊥, R 7→ >, P 7→ ⊥} = > ⇒ true

Thus F is satisfiable with satisfying interpretation

I : {P 7→ false, Q 7→ false, R 7→ true}.

Page 52 of 53

Example

F : (¬P ∨ Q ∨ R) ∧ (¬Q ∨ R) ∧ (¬Q ∨ ¬R) ∧ (P ∨ ¬Q ∨ ¬R)

F

(R) ∧ (¬R) ∧ (P ∨ ¬R) (¬P ∨ R)

⊥ >
I : {P 7→ false, Q 7→ false, R 7→ true}

(No matter what P is)

Q 7→ > Q 7→ ⊥

R 7→ >

Page 53 of 53

