Multiple choice warmup!

For each of the following quantities, identify all of the options that correctly describe the quantity.

(a) The function $f(n)$, where $f(n) = n \log(n)$.

(b) $T(n)$ given by $T(n) = T(n/4) + \Theta(n^2)$ with $T(n) = 1$ for all $n \leq 8$.

(c) $T(n)$ which is the running time of the following algorithm:

```python
mysteryAlg( n ):  
    if n < 3:  
        return 1  
    return mysteryAlg( n/2 ) + mysteryAlg( (n/2) + 1 )
```

where above all division is integer division (so a/b means $\lfloor a/b \rfloor$).

(A) $O(n^2)$ (B) $\Theta(n^2)$ (C) $\Omega(n)$ (D) $O(n)$ (E) $O(\log^2(n))$.
Prove or give a counter-example

Let $G = (V, E)$ be an undirected weighted graph, and let T be a minimum spanning tree in G. Decide whether the following statements must be true or may be false, and prove it!

(a) For any pair of distinct vertices $s, t \in V$, there is a unique simple path from s to t in T.

True False

(b) For any pair of distinct vertices $s, t \in V$, the cost of a simple path between s and t in T is minimal among all paths from s to t in G.

True False
Hashing warm-up

Let \mathcal{U} be a universe of size m, where m is a prime, and consider the following two hash families which hash \mathcal{U} into n buckets, where n is much smaller than m.

- First, consider \mathcal{H}_1, which is the set of all functions from \mathcal{U} to $\{1, \ldots, n\}$:
 \[
 \mathcal{H}_1 = \{ h \mid h : \mathcal{U} \to \{1, \ldots, n\} \}
 \]

- Second, let $p = m$ (so p is prime since we assumed m to be prime), and choose \mathcal{H}_2 to be:
 \[
 \mathcal{H}_2 = \{ h_{a,b} \mid a \in \{1, \ldots, p - 1\}, b \in \{0, \ldots, p - 1\} \},
 \]
 where $h_{a,b}(x) = (ax + b \mod p \mod n)$.

You want to implement a hash table using one of these two families. Why would you choose \mathcal{H}_2 over \mathcal{H}_1? **Choose the best answer.**

(A) \mathcal{H}_1 isn't a universal hash family.

(B) Storing an element of \mathcal{H}_1 takes a lot of space.

(C) Storing all of \mathcal{H}_1 takes a lot of space.
Shortest Paths

- When might you prefer breadth-first search to Dijkstra’s algorithm?

- When might you prefer Floyd-Warshall to Bellman-Ford?

- When might you prefer Bellman-Ford to Dijkstra’s algorithm?
Randomized algorithms

Suppose that b_1, \ldots, b_n are n distinct integers in a uniformly random order. Consider the following algorithm:

```python
findMax(b_1, \ldots, b_n):
    currentMax = -Infinity
    for i = 1, \ldots, n:
        if b_i > currentMax:
            currentMax = b_i
    return currentMax
```

What is the expected number of times that `currentMax` is updated? (Asymptotic notation is fine).
Suppose that roads in a city are laid out in an $n \times n$ grid, but some of the roads are obstructed.

For example, for $n = 3$, the city may look like this:

where we have only drawn the roads that are not blocked. You want to count the number of ways to get from $(0, 0)$ to $(n - 1, n - 1)$, using paths that only go up and to the right. In the example above, the number of paths is 3.

Design a DP algorithm to solve this problem.
Divide and Conquer!

Given an array A of length n, we say that an array B is a circular shift of A if there is an integer k between 0 and $n - 1$ (inclusive) so that

$$B = A[k : n] + A[0 : k],$$

where $+$ denotes concatenation.

For example, if $A = [2, 5, 6, 8, 9]$, then $B = [6, 8, 9, 2, 5]$ is a circular shift of A (with $k = 2$). The sorted array A itself is also a circular shift of A (with $k = 0$).

Design a $O(\log(n))$-time algorithm that takes as input an array B which is a circular shift of a sorted array which contains distinct positive integers, and returns the value of the largest element in B. For example, give B as above, your algorithm should return 9.
Greedy Algorithms!

There are n final exams on Dec. 13 at Stanford; exam i is scheduled to begin at time a_i and end at time b_i. Two exams which overlap cannot be administered in the same classroom; two exams i and j are defined to be overlapping if $[a_i, b_i] \cap [a_j, b_j] \neq \emptyset$ (including if $b_i = a_j$, so one starts exactly at the time that the other ends). Design an algorithm which solves the following problem.

- **Input:** Arrays A and B of length n so that $A[i] = a_i$ and $B[i] = b_i$.
- **Output:** The smallest number of classrooms necessary to schedule all of the exams, and an optimal assignment of exams to classrooms.
- **Running time:** $O(n \log(n) + nk)$, where k is the minimum number of classrooms needed.
- **For example:** Suppose there are three exams, with start and finish times as given below:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_i</td>
<td>12pm</td>
<td>4pm</td>
<td>2pm</td>
</tr>
<tr>
<td>b_i</td>
<td>3pm</td>
<td>6pm</td>
<td>5pm</td>
</tr>
</tbody>
</table>

Then the exams can be scheduled in two rooms; Exam 1 and Exam 2 can be scheduled in Room 1 and Exam 3 can be scheduled in Room 2.
Definition: A hash family \mathcal{H} (mapping \mathcal{U} into n buckets) is 2-universal if for all $x \neq y \in \mathcal{U}$ and for all $a, b \in \{1, \ldots, n\}$,

$$\mathbb{P}((h(x), h(y)) = (a, b)) = \frac{1}{n^2}.$$

(a) Show that if \mathcal{H} is 2-universal, then it is universal.

(b) Show that the converse is not true. That is, there is a universal family that’s not 2-universal.
More universal hash families

Say that \(H \) is a universal hash family, containing functions \(h : \mathcal{U} \rightarrow \{1, \ldots, n\} \). Consider the following game.

- You choose \(h \in H \) uniformly at random and keep it secret.
- A bad guy chooses \(x \in \mathcal{U} \), and asks you for \(h(x) \). (You give it to them).
- The bad guy chooses \(y \in \mathcal{U} \setminus \{x\} \), and tries to get \(h(y) = h(x) \).
- If \(h(x) = h(y) \), the bad guy wins. Otherwise, you win.

One of the following two is true.

1. There is a universal hash family \(H \) so that the bad guy wins with probability 1.
2. For any universal hash family \(H \), the probability that the bad guy wins is at most \(1/n \).

Which is true and why?
Which of the following can be colored as a red-black tree? Either give a coloring or explain why not.