CS161 Practice Problems

March 13, 2019
Hashing warm-up

Let \mathcal{U} be a universe of size m, where m is a prime, and consider the following two hash families which hash \mathcal{U} into n buckets, where n is much smaller than m.

- First, consider \mathcal{H}_1, which is the set of all functions from \mathcal{U} to $\{1, \ldots, n\}$:

$$\mathcal{H}_1 = \{ h \mid h : \mathcal{U} \to \{1, \ldots, n\} \}$$

- Second, let $p = m$ (so p is prime since we assumed m to be prime), and choose \mathcal{H}_2 to be

$$\mathcal{H}_2 = \{ h_{a,b} \mid a \in \{1, \ldots, p - 1\}, b \in \{0, \ldots, p - 1\} \},$$

where $h_{a,b}(x) = (ax + b \mod p) \mod n$.

You want to implement a hash table using one of these two families. Why would you choose \mathcal{H}_2 over \mathcal{H}_1? Choose the best answer.

(A) \mathcal{H}_1 isn't a universal hash family.

(B) Storing an element of \mathcal{H}_1 takes a lot of space.

(C) Storing all of \mathcal{H}_1 takes a lot of space.
Shortest Paths

- When might you prefer breadth-first search to Dijkstra’s algorithm?

- When might you prefer Floyd-Warshall to Bellman-Ford?

- When might you prefer Bellman-Ford to Dijkstra’s algorithm?
Randomized algorithms

Suppose that b_1, \ldots, b_n are n distinct integers in a uniformly random order. Consider the following algorithm:

```python
findMax(b_1, \ldots, b_n):
    currentMax = -\text{Infinity}
    for i = 1, \ldots, n:
        if b_i > currentMax:
            currentMax = b_i
    return currentMax
```

What is the expected number of times that `currentMax` is updated? (Asymptotic notation is fine).
Dynamic Programming!

- Suppose that roads in a city are laid out in an $n \times n$ grid, but some of the roads are obstructed.
- For example, for $n = 3$, the city may look like this:

```
(0,0) ┌─┐   (2,1) ┌─┐
    │   │   │   │
    │   │   │   │
    │   │   │   │
    │   │   │   │
    │   │   │   │
    │   │   │   │
(1,0) └─┘   (2,2) └─┘
```

where we have only drawn the roads that are not blocked. You want to count the number of ways to get from $(0,0)$ to $(n-1, n-1)$, using paths that only go up and to the right. In the example above, the number of paths is 3.

- Design a DP algorithm to solve this problem.
Divide and Conquer!

- Given an array A of length n, we say that an array B is a \textit{circular shift} of A if there is an integer k between 1 and n (inclusive) so that

where $+$ denotes concatenation.

- For example, if $A = [2, 5, 6, 8, 9]$, then $B = [6, 8, 9, 2, 5]$ is a circular shift of A (with $k = 2$). The sorted array A itself is also a circular shift of A (with $k = 1$).

- Design a $O(\log(n))$-time algorithm that takes as input an array B which is a circular shift of a sorted array which contains distinct positive integers, and returns the value of the largest element in B. For example, give B as above, your algorithm should return 9.
Greedy Algorithms!

There are n final exams on Dec. 13 at Stanford; exam i is scheduled to begin at time a_i and end at time b_i. Two exams which overlap cannot be administered in the same classroom; two exams i and j are defined to be *overlapping* if $[a_i, b_i] \cap [a_j, b_j] \neq \emptyset$ (including if $b_i = a_j$, so one starts exactly at the time that the other ends). Design an algorithm which solves the following problem.

- **Input:** Arrays A and B of length n so that $A[i] = a_i$ and $B[i] = b_i$.
- **Output:** The smallest number of classrooms necessary to schedule all of the exams, and an optimal assignment of exams to classrooms.
- **Running time:** $O(n \log(n) + nk)$, where k is the minimum number of classrooms needed.
- **For example:** Suppose there are three exams, with start and finish times as given below:

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_i</td>
<td>12pm</td>
<td>4pm</td>
<td>2pm</td>
</tr>
<tr>
<td>b_i</td>
<td>3pm</td>
<td>6pm</td>
<td>5pm</td>
</tr>
</tbody>
</table>

Then the exams can be scheduled in two rooms; Exam 1 and Exam 2 can be scheduled in Room 1 and Exam 3 can be scheduled in Room 2.
 Universal Hash Families

- Definition: A hash family \(\mathcal{H} \) (mapping \(\mathcal{U} \) into \(n \) buckets) is **2-universal** if for all \(x \neq y \in \mathcal{U} \) and for all \(a, b \in \{1, \ldots, n\} \),

\[
\mathbb{P}((h(x), h(y)) = (a, b)) = \frac{1}{n^2}.
\]

(a) Show that if \(\mathcal{H} \) is 2-universal, then it is universal.

(b) Show that the converse is not true. That is, there is a universal family that’s not 2-universal.
More universal hash families

Say that \mathcal{H} is a universal hash family, containing functions $h : \mathcal{U} \to \{1, \ldots, n\}$. Consider the following game.

- You choose $h \in \mathcal{H}$ uniformly at random and keep it secret.
- A bad guy chooses $x \in \mathcal{U}$, and asks you for $h(x)$. (You give it to them).
- The bad guy chooses $y \in \mathcal{U} \setminus \{x\}$, and tries to get $h(y) = h(x)$.
- If $h(x) = h(y)$, the bad guy wins. Otherwise, you win.

One of the following two is true.

1. There is a universal hash family \mathcal{H} so that the bad guy wins with probability 1.
2. For any universal hash family \mathcal{H}, the probability that the bad guy wins is at most $1/n$.

Which is true and why?
Which of the following can be colored as a red-black tree? Either give a coloring or explain why not.