Multiple choice warmup!

For each of the following quantities, identify all of the options that correctly describe the quantity.

(a) The function $f(n)$, where $f(n) = n \log(n)$. \(\text{(A), (C)}\)

(b) $T(n)$ given by $T(n) = T(n/4) + \Theta(n^2)$ with $T(n) = 1$ for all $n \leq 8$. \(\text{(A)(B)(C)}\)

(c) $T(n)$ which is the running time of the following algorithm:

\begin{verbatim}
mysteryAlg(n):
 if n < 3:
 return 1
 return mysteryAlg(n/2) + mysteryAlg((n/2) + 1)
\end{verbatim}

where above all division is integer division (so a/b means $\lfloor a/b \rfloor$). \(\text{(A), (C), (D)}\)

\(\text{(A) } O(n^2) \quad (B) \Theta(n^2) \quad (C) \Omega(n) \quad (D) O(n) \quad (E) O(\log^2(n))\).
Let $G = (V, E)$ be an undirected weighted graph, and let T be a minimum spanning tree in G. Decide whether the following statements must be true or may be false, and prove it!

(a) For any pair of distinct vertices $s, t \in V$, there is a unique path from s to t in T.

(b) For any pair of distinct vertices $s, t \in V$, the cost of a path between s and t in T is minimal among all paths from s to t in G.
Hashing warm-up

Let \mathcal{U} be a universe of size m, where m is a prime, and consider the following two hash families which hash \mathcal{U} into n buckets, where n is much smaller than m.

- First, consider \mathcal{H}_1, which is the set of all functions from \mathcal{U} to $\{1, \ldots, n\}$:

 $$\mathcal{H}_1 = \{h \mid h : \mathcal{U} \rightarrow \{1, \ldots, n\}\}$$

- Second, let $p = m$ (so p is prime since we assumed m to be prime), and choose \mathcal{H}_2 to be

 $$\mathcal{H}_2 = \{h_{a,b} \mid a \in \{1, \ldots, p - 1\}, b \in \{0, \ldots, p - 1\}\},$$

 where $h_{a,b}(x) = (ax + b \mod p) \mod n$.

You want to implement a hash table using one of these two families. Why would you choose \mathcal{H}_2 over \mathcal{H}_1? **Choose the best answer.**

(A) \mathcal{H}_1 isn't a universal hash family.

(B) Storing an element of \mathcal{H}_1 takes a lot of space.

(C) Storing all of \mathcal{H}_1 takes a lot of space.
Shortest Paths

- When might you prefer breadth-first search to Dijkstra’s algorithm?

 If the graph is unweighted

- When might you prefer Floyd-Warshall to Bellman-Ford?

 If you want shortest paths between all pairs of vertices.

- When might you prefer Bellman-Ford to Dijkstra’s algorithm?

 If there are negative edge wts
Suppose that b_1, \ldots, b_n are n distinct integers in a uniformly random order. Consider the following algorithm:

```python
findMax(b_1,...,b_n):
    currentMax = -Infinity
    for i = 1,...,n:
        if b_i > currentMax:
            currentMax = b_i
    return currentMax
```

What is the expected number of times that `currentMax` is updated? (Asymptotic notation is fine).

\[\mathbb{E}\{ \text{#times currentMax updated} \} = \mathbb{E}\{ \sum_{i=1}^{n} \mathbb{I}\{ b_i > b_1, \ldots, b_{i-1} \} \} = \sum_{i=1}^{n} P\{ b_i > b_1, \ldots, b_{i-1} \} = \sum_{i=1}^{n} \frac{1}{i} \]

Since b_1, \ldots, b_n are uniform, the probability that any one is largest is \(\frac{1}{i} \).

\[\Theta(\log(n)) \]
Suppose that roads in a city are laid out in an $n \times n$ grid, but some of the roads are obstructed.

For example, for $n = 3$, the city may look like this:

```
Define $M[i][j] = \#\text{paths from (0,0) to (i,j)}$.

$M[i][j] = \sum_{k=0}^{i-1} M[k][i-1] + \sum_{k=0}^{j-1} M[i-1][k]$.
```

\[M[i][j] = \begin{cases} 1 & \text{if } i = 0 \\ \prod_{k=0}^{i-1} M[k][i-1] + \prod_{k=0}^{j-1} M[i-1][k] & \text{otherwise} \end{cases} \]

where we have only drawn the roads that are not blocked. You want to count the number of ways to get from $(0,0)$ to $(n-1, n-1)$, using paths that only go up and to the right. In the example above, the number of paths is 3.

Design a DP algorithm to solve this problem.
Divide and Conquer!

Given an array A of length n, we say that an array B is a circular shift of A if there is an integer k between 1 and n (inclusive) so that

where $+$ denotes concatenation.

For example, if $A = [2, 5, 6, 8, 9]$, then $B = [6, 8, 9, 2, 5]$ is a circular shift of A (with $k = 2$). The sorted array A itself is also a circular shift of A (with $k = 1$).

Design a $O(\log(n))$-time algorithm that takes as input an array B which is a circular shift of a sorted array which contains distinct positive integers, and returns the value of the largest element in B. For example, give B as above, your algorithm should return 9.

Solution on next page.
def findMax(B):
 n ← len(B)
 if B[0] ≤ B[n-1]: \ case 1
 return B[n-1]
 mid = ⌊n/2⌋ + 1
 if B[mid] > B[0]: \ case 2
 return findMax(B[mid:n])
 if B[mid] < B[0]: \ case 3
 return findMax(B[mid+1:]

Idea:

- In \textbf{CASE 1}, the situation looks like
 \[\begin{array}{c}
 0 \\
 \hline
 \text{mid} \quad \text{mid} + 1 \\
 \hline
 n-1
 \end{array} \]
 So we return \(B[n-1] \)

- In \textbf{CASE 2}, it looks like
 \[\begin{array}{c}
 0 \\
 \hline
 \text{mid} \quad \text{mid} + 1 \\
 \hline
 n-1
 \end{array} \]
 So the max is on the right side and we recurse on \(B[mid:] \)

- In \textbf{CASE 3}, it looks like
 \[\begin{array}{c}
 0 \\
 \hline
 \text{mid} \quad \text{mid} + 1 \\
 \hline
 n-1
 \end{array} \]
 So the max is on the left side and we recurse on \(B[:mid+1] \)
There are n final exams on Dec. 13 at Stanford; exam i is scheduled to begin at time a_i and end at time b_i. Two exams which overlap cannot be administered in the same classroom; two exams i and j are defined to be overlapping if $[a_i, b_i] \cap [a_j, b_j] \neq \emptyset$ (including if $b_i = a_j$, so one starts exactly at the time that the other ends). Design an algorithm which solves the following problem.

- **Input:** Arrays A and B of length n so that $A[i] = a_i$ and $B[i] = b_i$.
- **Output:** The smallest number of classrooms necessary to schedule all of the exams, and an optimal assignment of exams to classrooms.
- **Running time:** $O(n \log(n) + nk)$, where k is the minimum number of classrooms needed.
- **For example:** Suppose there are three exams, with start and finish times as given below:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_i</td>
<td>12pm</td>
<td>4pm</td>
<td>2pm</td>
</tr>
<tr>
<td>b_i</td>
<td>3pm</td>
<td>6pm</td>
<td>5pm</td>
</tr>
</tbody>
</table>

Then the exams can be scheduled in two rooms; Exam 1 and Exam 2 can be scheduled in Room 1 and Exam 3 can be scheduled in Room 2.
def scheduleRooms(A, B):
 n ← len(A)
 C = ∑ (A[i], i) for i = 0, ..., n - 1
 sort C // increasing order by start time.
 rooms = [] // list of rooms
 endTimes = []
 for i = 0, ..., n-1:
 Cr = O, ..., len(rooms) - 1:
 if C[i][1] > endTimes[Cr]:
 rooms[Cr].append(C[i][1])
 endTimes[Cr] = B[C[i][1]]
 else: // did not break
 rooms. append(C[i][1])
 endTimes. append(0)
 return rooms.

Correctness
by induction
Inductive hypothesis: After adding the i-th exam, there is an optimal schedule that extends the current solution.
Base case: After adding 0 exams, there is an optimal solution extending the current one. Thus, we can just sort the exams.
Inductive step: Suppose the inductive hypothesis holds for i-1, and let S be the optimal schedule that extends it.
If S puts exam i where we would put it (say, room r), then we are done, so suppose that S puts exam i in room r.

Let j>i be the next exam scheduled in room r.
Then aj ≥ ai, since ai had the smallest start time of all exams not yet picked.
So consider the schedule S' where we swap the rest of room r with the rest of room r:

Return rooms.

This is still a valid schedule, and uses the same number of rooms as S, so it is also optimal. And it puts exam i in room r, so we're done.

Conclusion: At the end of the algorithm, the schedule is optimal and extends the current one to the current one is optimal.
Definition: A hash family \mathcal{H} (mapping \mathcal{U} into n buckets) is **2-universal** if for all $x \neq y \in \mathcal{U}$ and for all $a, b \in \{1, \ldots, n\}$,

$$\mathbb{P}((h(x), h(y)) = (a, b)) = \frac{1}{n^2}.$$

(a) Show that if \mathcal{H} is 2-universal, then it is universal.

(b) Show that the converse is not true. That is, there is a universal family that’s not 2-universal.

(a) Suppose that \mathcal{H} is 2-universal. Then for all $x \neq y \in \mathcal{U}$,

$$\mathbb{P}_{h \in \mathcal{H}}(h(x) = h(y)) = \sum_{t \in \{1, \ldots, n\}} \mathbb{P}_{h \in \mathcal{H}}((h(x), h(y)) = (t, t))$$

$$= \sum_{t \in \{1, \ldots, n\}} \frac{1}{n} = \frac{1}{n}.$$

So by definition \mathcal{H} is universal.

(b) Consider: $\mathcal{U} = \{x, y\}$, $\mathcal{H} = \{h_1, h_2\}$, where:

$$h_1 \begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix}, \quad h_2 \begin{bmatrix} x & y \\ 1 & 0 \end{bmatrix}.$$

Then $\mathbb{P}_{h \in \mathcal{H}}(h(x) = h(y)) = \frac{1}{2}$. But $\mathbb{P}_{h \in \mathcal{H}}((h(x), h(y)) = (0, 0)) = \frac{1}{2}$, not $\frac{1}{n^2}$.
More universal hash families

Say that \mathcal{H} is a universal hash family, containing functions $h : \mathcal{U} \to \{1, \ldots, n\}$. Consider the following game.

- You choose $h \in \mathcal{H}$ uniformly at random and keep it secret.
- A bad guy chooses $x \in \mathcal{U}$, and asks you for $h(x)$. (You give it to them).
- The bad guy chooses $y \in \mathcal{U} \setminus \{x\}$, and tries to get $h(y) = h(x)$.
- If $h(x) = h(y)$, the bad guy wins. Otherwise, you win.

One of the following two is true.

1. There is a universal hash family \mathcal{H} so that the bad guy wins with probability 1.
2. For any universal hash family \mathcal{H}, the probability that the bad guy wins is at most $1/n$.

Which is true and why?

To see this, consider the hash family $H = \{h_1, h_2, h_3\}$ with $\mathcal{U} = \{x, y, z\}$, $n = 2$, given by $h_1(x) = 0$, $h_1(y) = 1$, $h_1(z) = 1$, $h_2(x) = 1$, $h_2(y) = 0$, $h_2(z) = 0$, $h_3(x) = 0$, $h_3(y) = 1$, $h_3(z) = 1$.

This is universal since

- $\Pr[h(x) = h(y)] = \frac{1}{2}$
- $\Pr[h(x) = h(z)] = \frac{1}{2}$
- $\Pr[h(y) = h(z)] = 0 < \frac{1}{2}$

Bad guy’s algorithm:

If $h(x) = 1$, choose y.
If $h(x) = 0$, choose z.

Given by

$\begin{array}{c|c|c|c}
 \text{hash} & x & y & z \\
\hline
 h_1 & 0 & 1 & 1 \\
 h_2 & 1 & 0 & 0 \\
 h_3 & 1 & 0 & 1 \\
\end{array}$
Red-Black Trees

Which of the following can be colored as a red-black tree? Either give a coloring or explain why not.

This one can’t be colored.

THIS path from the root to NIL can contain at most 3 black nodes (including NIL).

But THIS one must have at least 4: The root, NIL, and then at least two internal ones.