CS161 Review Session Practice Problems

12/6/2017

WITH SOLUTION SKETCHES!
Multiple choice warmup!

For each of the following quantities, **identify all of the options** that correctly describe the quantity.

(a) The function \(f(n) \), where \(f(n) = n \log(n) \).
 \(\text{(A)}, \text{(C)} \)

(b) \(T(n) \) given by \(T(n) = T(n/4) + \Theta(n^2) \) with \(T(n) = 1 \) for all \(n \leq 8 \).
 \(\text{(A)} \text{(B)} \text{(C)} \)

(c) \(T(n) \) which is the running time of the following algorithm:

\[
\text{mysteryAlg(n)}:
\]
\[
\quad \text{if } n < 3:\
\quad \quad \text{return 1}
\]
\[
\quad \text{return mysteryAlg(n/2) + mysteryAlg((n/2) + 1)}
\]

where above all division is integer division (so \(a/b \) means \(\lfloor a/b \rfloor \)).
 \(\text{(A)} \text{(C)} \text{(D)} \)

(\(A \) \(O(n^2) \) \(B \) \(\Theta(n^2) \) \(C \) \(\Omega(n) \) \(D \) \(O(n) \) \(E \) \(O(\log^2(n)) \)).
Let $G = (V, E)$ be an undirected weighted graph, and let T be a minimum spanning tree in G. Decide whether the following statements must be true or may be false, and prove it!

(a) For any pair of distinct vertices $s, t \in V$, there is a unique path from s to t in T.

(b) For any pair of distinct vertices $s, t \in V$, the cost of a path between s and t in T is minimal among all paths from s to t in G.
Hashing warm-up

Let \mathcal{U} be a universe of size m, where m is a prime, and consider the following two hash families which hash \mathcal{U} into n buckets, where n is much smaller than m.

- First, consider \mathcal{H}_1, which is the set of all functions from \mathcal{U} to $\{1, \ldots, n\}$:
\[
\mathcal{H}_1 = \{ h \mid h : \mathcal{U} \to \{1, \ldots, n\}\}
\]

- Second, let $p = m$ (so p is prime since we assumed m to be prime), and choose \mathcal{H}_2 to be
\[
\mathcal{H}_2 = \{ h_{a,b} \mid a \in \{1, \ldots, p - 1\}, b \in \{0, \ldots, p - 1\}\},
\]
where $h_{a,b}(x) = (ax + b \mod p) \mod n$.

You want to implement a hash table using one of these two families. Why would you choose \mathcal{H}_2 over \mathcal{H}_1? **Choose the best answer.**

(A) \mathcal{H}_1 isn't a universal hash family.

(B) Storing an element of \mathcal{H}_1 takes a lot of space.

(C) Storing all of \mathcal{H}_1 takes a lot of space.
Shortest Paths

- When might you prefer breadth-first search to Dijkstra’s algorithm?

 If the graph is unweighted

- When might you prefer Floyd-Warshall to Bellman-Ford?

 If you want shortest paths between all pairs of vertices.

- When might you prefer Bellman-Ford to Dijkstra’s algorithm?

 If there are negative edge wts
Suppose that \(b_1, \ldots, b_n \) are \(n \) distinct integers in a uniformly random order. Consider the following algorithm:

\[
\text{findMax}(b_1, \ldots, b_n):
\]
\[
\text{currentMax} = -\text{Infinity}
\]
\[
\text{for } i = 1, \ldots, n:
\]
\[
\text{if } b_i > \text{currentMax}:
\]
\[
\text{currentMax} = b_i
\]
\[
\text{return } \text{currentMax}
\]

What is the expected number of times that \(\text{currentMax} \) is updated? (Asymptotic notation is fine).

\(\Theta(\log(n)) \)
Suppose that roads in a city are laid out in an $n \times n$ grid, but some of the roads are obstructed.

For example, for $n = 3$, the city may look like this:

\[
\begin{align*}
\text{Define } M[i,j] &= \#\text{paths from } (0,0) \text{ to } (i,j). \\
M[i,j] &= \sum \sum M[i-1,j] + \sum \sum M[i,j-1] \\
\end{align*}
\]

\[
\begin{align*}
\text{Initialize } M[i,j] &= 0 \quad \forall \ i,j \in [0,\ldots,n-1] \\
M[0,0] &\leftarrow 1 \\
\text{for } i=0,\ldots, n-1:\n\text{for } j=0,\ldots, n-1:\n\quad \text{if } i>0 \text{ and there is a road } (i-1,j) \rightarrow (i,j): \\
\quad \quad M[i,j] += M[i-1,j] \\
\quad \text{if } j>0 \text{ and there is a road } (i,j-1) \rightarrow (i,j): \\
\quad \quad M[i,j] += M[i,j-1] \\
\text{Return } M[n-1,n-1].
\end{align*}
\]

where we have only drawn the roads that are not blocked. You want to count the number of ways to get from $(0,0)$ to $(n-1, n-1)$, using paths that only go up and to the right. In the example above, the number of paths is 3.

Design a DP algorithm to solve this problem.
Divide and Conquer!

- Given an array A of length n, we say that an array B is a *circular shift* of A if there is an integer k between 1 and $n-1$ (inclusive) so that

$$B = A[k : n] + A[0 : k],$$

where $+$ denotes concatenation.

- For example, if $A = [2, 5, 6, 8, 9]$, then $B = [6, 8, 9, 2, 5]$ is a circular shift of A (with $k = 2$). The sorted array A itself is also a circular shift of A (with $k = 1$).

- Design a $O(\log(n))$-time algorithm that takes as input an array B which is a circular shift of a sorted array which contains distinct positive integers, and returns the value of the largest element in B. For example, give B as above, your algorithm should return 9.

Solution on next page.
SOLUTION for DIVIDE + CONQUER

def findMax(B):
 n ← \ln(B)
 if B[0] ≤ B[n-1]: \case 1
 return B[n-1]
 mid = \lceil n/2 \rceil
 if B[mid] > B[0]: \case 2
 return findMax(B[mid:n])
 if B[mid] < B[0]: \case 3
 return findMax(B[mid+1:])

Idea:

- In \case 1, the situation looks like
 \begin{align*}
 B[0] &< B[n-1] \\
 \quad &\text{so we return } B[n-1]
 \end{align*}

- In \case 2, it looks like
 \begin{align*}
 B[0] &≥ B[n-1] \\
 \quad &\text{so the max is on the right side and we recurse on } B[mid:]
 \end{align*}

- In \case 3, it looks like
 \begin{align*}
 B[0] &≤ B[n-1] \\
 \quad &\text{so the max is on the left side and we recurse on } B[mid+1]
 \end{align*}
Greedy Algorithms!

There are n final exams on Dec. 13 at Stanford; exam i is scheduled to begin at time a_i and end at time b_i. Two exams which overlap cannot be administered in the same classroom; two exams i and j are defined to be overlapping if $[a_i, b_i] \cap [a_j, b_j] \neq \emptyset$ (including if $b_i = a_j$, so one starts exactly at the time that the other ends). Design an algorithm which solves the following problem.

- **Input:** Arrays A and B of length n so that $A[i] = a_i$ and $B[i] = b_i$.
- **Output:** The smallest number of classrooms necessary to schedule all of the exams, and an optimal assignment of exams to classrooms.
- **Running time:** $O(n \log(n) + nk)$, where k is the minimum number of classrooms needed.
- **For example:** Suppose there are three exams, with start and finish times as given below:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_i</td>
<td>12pm</td>
<td>4pm</td>
<td>2pm</td>
</tr>
<tr>
<td>b_i</td>
<td>3pm</td>
<td>6pm</td>
<td>5pm</td>
</tr>
</tbody>
</table>

Then the exams can be scheduled in two rooms; Exam 1 and Exam 2 can be scheduled in Room 1 and Exam 3 can be scheduled in Room 2.
def scheduleRooms(A, B):
 n ← len(A)
 C = [(A[i], i) for i = 0, n-1]
 sort C // increasing order by start time.
 rooms = [] // list of rooms
 endTimes = []
 for i = 0, n-1:
 for r = 0, len(rooms)-1:
 if C[i][0] > endTimes[r]:
 rooms[r].append(C[i][1])
 endTimes[r] += C[i][0]
 break
 else: // did not break
 rooms.append(C[i][1])
 endTimes.append(C[i][0])

 return rooms.
Universal Hash Families

• Definition: A hash family \(\mathcal{H} \) (mapping \(\mathcal{U} \) into \(n \) buckets) is **2-universal** if for all \(x \neq y \in \mathcal{U} \) and for all \(a, b \in \{1, \ldots, n\} \),

\[
P((h(x), h(y))) = (a, b)) = \frac{1}{n^2}.
\]

(a) Show that if \(\mathcal{H} \) is 2-universal, then it is universal.

(b) Show that the converse is not true. That is, there is a universal family that’s not 2-universal.

(a) Suppose that \(\mathcal{H} \) is 2-universal. Then \(\forall x \neq y \in \mathcal{U}, \)

\[
P(h(x) = h(y) | h \in \mathcal{H}) = \frac{\sum_{t \in \{1, \ldots, n\}} P\{(h(x), h(y)) = (a, b)\}}{1/n}.
\]

So by definition \(\mathcal{H} \) is universal.

(b) Consider:

\[
\begin{array}{cc}
\mathcal{U} = \{x, y\}, & \mathcal{H} = \{h_1, h_2\}, \\
\hline
x & y \\
0 & 0 \\
1 & 0
\end{array}
\]

Then \(P\{h(x) = h(y)\} = 1/2 \).

But \(P\{h(x), h(y) = (0, 0)\} = 1/2, not 1/n^2 \).
More universal hash families

Say that \mathcal{H} is a universal hash family, containing functions $h : \mathcal{U} \rightarrow \{1, \ldots, n\}$. Consider the following game.

- You choose $h \in \mathcal{H}$ uniformly at random and keep it secret.
- A bad guy chooses $x \in \mathcal{U}$, and asks you for $h(x)$. (You give it to them).
- The bad guy chooses $y \in \mathcal{U} \setminus \{x\}$, and tries to get $h(y) = h(x)$.
- If $h(x) = h(y)$, the bad guy wins. Otherwise, you win.

One of the following two is true.

1. There is a universal hash family \mathcal{H} so that the bad guy wins with probability 1.
2. For any universal hash family \mathcal{H}, the probability that the bad guy wins is at most $1/n$.

Which is true and why?

To see this, consider the hash family $\mathcal{H} = \{h_1, h_2\}$ over $\mathcal{U} = \{x, y, z\}$, $n = 2$, given by

<table>
<thead>
<tr>
<th>h_1</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

This is universal since $P\{h(x) = h(y)\} = 1/2$, $P\{h(x) = h(z)\} = 1/2$, $P\{h(y) = h(z)\} = 0 < 1/2$.

Bad guy’s algorithm:
- If $h(x) = 1$, choose z.
- If $h(x) = 0$, choose y.

CS161 Review Session Practice Problems
Red-Black Trees

Which of the following can be colored as a red-black tree? Either give a coloring or explain why not.

![Tree Diagrams]

This one can’t be colored.

THIS path from the root to NIL can contain at most 3 black nodes (including NIL).

But THIS one must have at least 4: The root, NIL, and then at least two internal ones.