Lecture 12
More Bellman-Ford, Floyd-Warshall, and Dynamic Programming!
WiCS Speed Mentoring Night!

network with grad students + learn about their research!

who Grad students sharing their research!
date + time FEB 26 @ 6-7 PM
location Gates 219
Announcements

• HW5 due Friday
• The midterm was hard!
 • But I think you guys did great!
 • Grades and solutions released soon…
Important feedback from Piazza

possible new cartoon character?
Anakin the Adversarial Aardvark
Today

• Bellman-Ford continued

• Bellman-Ford is a special case of Dynamic Programming!

• What is dynamic programming?
 • Warm-up example: Fibonacci numbers

• Another example:
 • Floyd-Warshall Algorithm
Recall

• A weighted directed graph:

Weights on edges represent costs.

• The cost of a path is the sum of the weights along that path.

• A shortest path from s to t is a directed path from s to t with the smallest cost.

• The single-source shortest path problem is to find the shortest path from s to v for all v in the graph.

This is a path from s to t of cost 22.

This is a path from s to t of cost 10. It is the shortest path from s to t.
Last time

- Dijkstra’s algorithm!
- Bellman-Ford algorithm!
 - Both solve single-source shortest path in weighted graphs.

We sped through the Bellman-Ford algorithm so let’s do that now in a bit more detail.
How far is a node from Gates?

\[
\begin{align*}
&d^{(0)} = 0 \, \infty \, \infty \, \infty \\
&d^{(1)} = \infty \, \infty \, \infty \\
&d^{(2)} = \infty \, \infty \, \infty \\
&d^{(3)} = \infty \, \infty \\
&d^{(4)} = \infty \\
\end{align*}
\]

- For \(i = 0, \ldots, n-2 \):
 - For \(u \) in \(V \):
 - For \(v \) in \(u.\text{neighbors} \):
 \[
 d^{(i+1)}[v] \leftarrow \min(d^{(i+1)}[v], d^{(i)}[v], d^{(i)}[u] + \text{edgeWeight}(u,v))
 \]

WHOOPS! The pseudocode was messed up during lecture! It’s still a bit messed up since \(d^{(i+1)} \) might not get initialized before it’s used – just assume that everything is initialized to Infinity. (We’ll re-write the pseudocode later in the lecture so it won’t matter too much.)
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For $i=0,...,n-2$:
 - For u in V:
 - For v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i+1)}[v], d^{(i)}[v], d^{(i)}[u] + \text{edgeWeight}(u,v))$
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• For $i=0,\ldots,n-2$:
 • For u in V:
 • For v in u.neighbors:
 • $d^{(i+1)}[v] \leftarrow \min(d^{(i+1)}[v], d^{(i)}[v], d^{(i)}[u] + \text{edgeWeight}(u,v))$

![Diagram showing the Bellman-Ford algorithm progression]
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th>Node</th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Algorithm:

- For $i=0,...,n-2$:
 - For u in V:
 - For v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i+1)}[v], d^{(i)}[v], d^{(i)}[u] + \text{edgeWeight}(u,v))$
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
</tbody>
</table>

These are the final distances!

For $i=0,...,n-2$:
\[\text{For } u \text{ in } V: \]
\[\text{For } v \text{ in } u.\text{neighbors}: \]
\[d^{(i+1)}[v] \leftarrow \min(d^{(i+1)}[v], d^{(i)}[v], d^{(i)}[u] + \text{edgeWeight}(u,v)) \]
Interpretation of $d^{(i)}$

$d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
</tbody>
</table>
Why does Bellman-Ford work?

• Inductive hypothesis:
 • $d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.

• Conclusion:
 • $d^{(n-1)}[v]$ is equal to the cost of the shortest path between s and v with at most $n-1$ edges.

Do the base case and inductive step!
Aside: simple paths

Assume there is no negative cycle.

- Then there is a shortest path from s to t, and moreover there is a **simple** shortest path.

 - A **simple path** in a graph with n vertices has at most n-1 edges in it.

 - So there is a shortest path with at most n-1 edges
Why does it work?

• Inductive hypothesis:
 • $d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.

• Conclusion:
 • $d^{(n-1)}[v]$ is equal to the cost of the shortest path between s and v with at most $n-1$ edges.
 • **If there are no negative cycles**, $d^{(n-1)}[v]$ is equal to the cost of the shortest path.

Notice that negative edge weights are fine. Just not negative cycles.
Bellman-Ford* algorithm:

Bellman-Ford*(G,s):

- Initialize arrays $d^{(0)},...,d^{(n-1)}$ of length n to be all ∞
- $d^{(0)}[s] = 0$
- For $i=0,...,n-2$:
 - For u in V:
 - For v in u.outNeighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + w(u,v))$
- Now, $dist(s,v) = d^{(n-1)}[v]$ for all v in V.
 - (Assuming G has no negative cycles)

*Slightly different than some versions of Bellman-Ford...but this way is pedagogically convenient for today’s lecture.
We can simplify the pseudocode a bit

• This will be useful later...
One step of Bellman-Ford

- **For** \(u \) in \(V \):
 - **For** \(v \) in \(u\)\text{.outNeighbors}:
 - \(d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + w(u,v)) \)

What will happen to \(z \) if we run these for-loops?
One step of Bellman-Ford

• For \(u \) in \(V \):
 • For \(v \) in \(u \).outNeighbors:
 • \(d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + w(u,v)) \)

What will happen to \(z \) if we run these for loops?
One step of Bellman-Ford

• **For** u in V:
 - **For** v in u.outNeighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v] , d^{(i+1)}[v] , d^{(i)}[u] + w(u,v))$
 - Each vertex z finds the in-neighbor u so that $d^{(i)}[u] + w(u,z)$ is smallest and goes with that.
 - (Unless z chooses not to update).
 - So we can equivalently write:

• **For** z in V:
 - $d^{(i+1)}[z] \leftarrow \min(d^{(i)}[z] , \min_{u \text{ in } z.\text{inNbrs}} \{d^{(i)}[u] + w(u,z)\})$
Bellman-Ford* algorithm

Bellman-Ford*(G,s):

- Initialize arrays $d^{(0)},\ldots,d^{(n-1)}$ of length n
- $d^{(0)}[v] = \infty$ for all v in V
- $d^{(0)}[s] = 0$
- For $i=0,\ldots,n-2$:
 - For v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v] , \min_{u \in v\text{'s inNbrs}} \{d^{(i)}[u] + w(u,v)\})$
- Now, $\text{dist}(s,v) = d^{(n-1)}[v]$ for all v in V.

*Slightly different than some versions of Bellman-Ford...but this way is pedagogically convenient for today’s lecture.

$G = (V,E)$ is a graph with n vertices and m edges.
Note on implementation

• Don’t actually keep all n arrays around.
• Just keep two at a time: “last round” and “this round”

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
</tbody>
</table>
Bellman-Ford take-aways

- Running time is $O(mn)$
 - For each of n rounds, update m edges.
- Works fine with negative edges.
- Does not work with negative cycles.
 - But it can detect negative cycles!
 - (We waved our hands at this last time)

Go through the slides from last time, or CLRS, and understand how to modify Bellman-Ford to handle negative cycles!
Important thing about B-F for the rest of this lecture

d^{(i)}[v] is equal to the cost of the shortest path between s and v with at most i edges.
Bellman-Ford is an example of...

Dynamic Programming!

Today:

• Example of Dynamic programming:
 • Fibonacci numbers.
 • (And Bellman-Ford)

• What is dynamic programming, exactly?
 • And why is it called “dynamic programming”?

• Another example: Floyd-Warshall algorithm
 • An “all-pairs” shortest path algorithm
Pre-Lecture exercise:
How not to compute Fibonacci Numbers

• Definition:
 - $F(n) = F(n-1) + F(n-2)$, with $F(0) = F(1) = 1$.
 - The first several are:
 - 1
 - 1
 - 2
 - 3
 - 5
 - 8
 - 13, 21, 34, 55, 89, 144,…

• Question:
 - Given n, what is $F(n)$?
Candidate algorithm

```
• def Fibonacci(n):
  • if n == 0 or n == 1:
    • return 1
  • return Fibonacci(n-1) + Fibonacci(n-2)
```

Running time?
• \(T(n) = T(n-1) + T(n-2) + O(1) \)
• \(T(n) \geq T(n-1) + T(n-2) \) for \(n \geq 2 \)
• So \(T(n) \) grows at least as fast as the Fibonacci numbers themselves...
• Fun fact, that’s like \(\phi^n \) where \(\phi = \frac{1+\sqrt{5}}{2} \) is the golden ratio.
• aka, EXPONENTIALLY QUICKLY 😑
What’s going on? Consider $\text{Fib}(8)$

That’s a lot of repeated computation!
Maybe this would be better:

```python
def fasterFibonacci(n):
    F = [1, 1, None, None, ..., None ]
    \ F has length n + 1
    for i = 2, ..., n:
        F[i] = F[i-1] + F[i-2]
    return F[n]
```

Much better running time!
This was an example of...

Dynamic Programming!
What is *dynamic programming*?

- It is an algorithm design paradigm
 - like divide-and-conquer is an algorithm design paradigm.
- Usually it is for solving **optimization problems**
 - eg, *shortest* path
 - (Fibonacci numbers aren’t an optimization problem, but they are a good example...)
Elements of dynamic programming

1. Optimal sub-structure:

- Big problems break up into sub-problems.
 - Fibonacci: $F(i)$ for $i \leq n$
 - Bellman-Ford: Shortest paths with at most i edges for $i \leq n$
- The solution to a problem can be expressed in terms of solutions to smaller sub-problems.
 - Fibonacci:
 \[
 F(i+1) = F(i) + F(i-1)
 \]
 - Bellman-Ford:
 \[
 d^{(i+1)}[v] \leftarrow \min\{ d^{(i)}[v], \min_u \{d^{(i)}[u] + \text{weight}(u,v)\} \}
 \]

Shortest path with at most i edges from s to v

Shortest path with at most i edges from s to u.
Elements of dynamic programming

2. Overlapping sub-problems:

• The sub-problems overlap.

 • Fibonacci:
 • Both $F[i+1]$ and $F[i+2]$ directly use $F[i]$.
 • And lots of different $F[i+x]$ indirectly use $F[i]$.

 • Bellman-Ford:
 • Many different entries of $d^{(i+1)}$ will directly use $d^{(i)}[v]$.
 • And lots of different entries of $d^{(i+x)}$ will indirectly use $d^{(i)}[v]$.

• This means that we can save time by solving a sub-problem just once and storing the answer.
Elements of dynamic programming

• Optimal substructure.
 • Optimal solutions to sub-problems can be used to find the optimal solution of the original problem.

• Overlapping subproblems.
 • The subproblems show up again and again

• Using these properties, we can design a dynamic programming algorithm:
 • Keep a table of solutions to the smaller problems.
 • Use the solutions in the table to solve bigger problems.
 • At the end we can use information we collected along the way to find the solution to the whole thing.
Two ways to think about and/or implement DP algorithms

• Top down

• Bottom up

This picture isn’t hugely relevant but I like it.
Bottom up approach what we just saw.

• For Fibonacci:
 • Solve the small problems first
 • fill in $F[0], F[1]$
 • Then bigger problems
 • fill in $F[2]$
 • …
 • Then bigger problems
 • fill in $F[n-1]$
• Then finally solve the real problem.
 • fill in $F[n]$
Bottom up approach
what we just saw.

• For Bellman-Ford:
 • Solve the small problems first
 • fill in $d^{(0)}$
 • Then bigger problems
 • fill in $d^{(1)}$
 • ...
 • Then bigger problems
 • fill in $d^{(n-2)}$
 • Then finally solve the real problem.
 • fill in $d^{(n-1)}$
Top down approach

• Think of it like a recursive algorithm.
 • To solve the big problem:
 • Recurse to solve smaller problems
 • Those recurse to solve smaller problems
 • etc..

• The difference from divide and conquer:
 • Keep track of what small problems you’ve already solved to prevent re-solving the same problem twice.
 • Aka, “memo-ization”
Example of top-down Fibonacci

- define a global list $F = [1, 1, \text{None}, \text{None}, \ldots, \text{None}]$

- **def** Fibonacci(n):
 - **if** $F[n] \neq \text{None}$:
 - **return** $F[n]$
 - **else**:
 - $F[n] = \text{Fibonacci}(n-1) + \text{Fibonacci}(n-2)$
 - **return** $F[n]$

Memo-ization: Keeps track (in F) of the stuff you’ve already done.
Memo-ization visualization

Collapse repeated nodes and don’t do the same work twice!
Memo-ization Visualization ctd

Collapse repeated nodes and don’t do the same work twice!

But otherwise treat it like the same old recursive algorithm.

• define a global list F = [1,1,None, None, ..., None]

 • def Fibonacci(n):
 • if F[n] != None:
 • return F[n]
 • else:
 • F[n] = Fibonacci(n-1) + Fibonacci(n-2)
 • return F[n]
What have we learned?

• **Dynamic programming:**
 - Paradigm in algorithm design.
 - Uses **optimal substructure**
 - Uses **overlapping subproblems**
 - Can be implemented **bottom-up** or **top-down**.
 - It’s a fancy name for a pretty common-sense idea:
 - Don’t duplicate work if you don’t have to!
Why “dynamic programming”?

- Programming refers to finding the optimal “program.”
 - as in, a shortest route is a plan aka a program.
- Dynamic refers to the fact that it’s multi-stage.
- But also it’s just a fancy-sounding name.

Manipulating computer code in an action movie?
Why “dynamic programming”?

• Richard Bellman invented the name in the 1950’s.
• At the time, he was working for the RAND Corporation, which was basically working for the Air Force, and government projects needed flashy names to get funded.
• From Bellman’s autobiography:
 • “It’s impossible to use the word, dynamic, in the pejorative sense…I thought dynamic programming was a good name. It was something not even a Congressman could object to.”
Floyd-Warshall Algorithm

Another example of DP

• This is an algorithm for **All-Pairs Shortest Paths (APSP)**
 • That is, I want to know the shortest path from u to v for **ALL** pairs u,v of vertices in the graph.
 • Not just from a special single source s.

<table>
<thead>
<tr>
<th>Source</th>
<th>s</th>
<th>u</th>
<th>v</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>u</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>v</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>t</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>
Floyd-Warshall Algorithm
Another example of DP

• This is an algorithm for **All-Pairs Shortest Paths (APSP)**
 • That is, I want to know the shortest path from u to v for **ALL pairs** u,v of vertices in the graph.
 • Not just from a special single source s.

• **Naïve solution** (if we want to handle negative edge weights):
 • For all s in G:
 • Run Bellman-Ford on G starting at s.

• Time $O(n \cdot nm) = O(n^2m)$,
 • may be as bad as n^4 if $m=n^2$
Label the vertices 1, 2, ..., n

Optimal substructure

Diagram showing vertices labeled 1, 2, ..., n connected by directed edges.

Optimal substructure

Sub-problem(k-1):
For all pairs, u,v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in \{1,...,k-1\}.

Let $D^{(k-1)}[u,v]$ be the solution to Sub-problem(k-1).

Label the vertices 1,2,...,n (We omit some edges in the picture below – meant to be a cartoon, not an example).

Our DP algorithm will fill in the n-by-n arrays $D^{(0)}, D^{(1)}, ..., D^{(n)}$ iteratively and then we’ll be done.

This is the shortest path from u to v through the blue set. It has cost $D^{(k-1)}[u,v]$.

Vertices 1, ..., k-1
Optimal substructure

Sub-problem(k-1):
For all pairs, u, v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in \{1, ..., k-1\}.

Let \(D^{(k-1)}[u,v] \) be the solution to Sub-problem(k-1).

Our DP algorithm will fill in the n-by-n arrays \(D^{(0)}, D^{(1)}, ..., D^{(n)} \) iteratively and then we'll be done.

Question: How can we find \(D^{(k)}[u,v] \) using \(D^{(k-1)} \)?

Label the vertices 1, 2, ..., n
(We omit some edges in the picture below – meant to be a cartoon, not an example).

This is the shortest path from u to v through the blue set. It has length \(D^{(k-1)}[u,v] \).
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, \ldots, k\}$.
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, \ldots, k\}$.

Case 1: we don’t need vertex k.

\[D^{(k)}[u,v] = D^{(k-1)}[u,v] \]

This path was the shortest before, so it’s still the shortest now.
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, \ldots, k\}$.

Case 2: we need vertex k.

Vertices 1, ..., k

Vertices 1, ..., $k-1$
Case 2 continued

- Suppose there are **no negative cycles**.
 - Then WLOG the shortest path from u to v through $\{1, \ldots, k\}$ is **simple**.

- If **that path** passes through k, it must look like this:
 - **This path** is the shortest path from u to k through $\{1, \ldots, k-1\}$.
 - sub-paths of shortest paths are shortest paths
 - Similarly for **this path**.

\[
D^{(k)}[u,v] = D^{(k-1)}[u,k] + D^{(k-1)}[k,v]
\]

Case 2: we need vertex k.

Vertices 1, ..., k
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

Case 1: we don’t need vertex k.

$$D^{(k)}[u,v] = D^{(k-1)}[u,v]$$

Case 2: we need vertex k.

$$D^{(k)}[u,v] = D^{(k-1)}[u,k] + D^{(k-1)}[k,v]$$
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v] = \min\{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \}$

Case 1: Cost of shortest path through \{1,...,k-1\}

Case 2: Cost of shortest path from \(u\) to \(k\) and then from \(k\) to \(v\) through \{1,...,k-1\}

Optimal substructure:
- We can solve the big problem using solutions to smaller problems.

Overlapping sub-problems:
- $D^{(k-1)}[k,v]$ can be used to help compute $D^{(k)}[u,v]$ for lots of different \(u\)’s.
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

- $D^{(k)}[u,v] = \min\{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \}$

Case 1: Cost of shortest path through \{1,\ldots,k-1\}

Case 2: Cost of shortest path from u to k and then from k to v through \{1,\ldots,k-1\}

- Using our *Dynamic programming* paradigm, this immediately gives us an algorithm!
Floyd-Warshall algorithm

• Initialize n-by-n arrays $D^{(k)}$ for $k = 0,\ldots,n$
 • $D^{(k)}[u,u] = 0$ for all u, for all k
 • $D^{(k)}[u,v] = \infty$ for all $u \neq v$, for all k
 • $D^{(0)}[u,v] = \text{weight}(u,v)$ for all (u,v) in E.

• For $k = 1, \ldots, n$:
 • For pairs u,v in V^2:
 • $D^{(k)}[u,v] = \min\{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \}$

• Return $D^{(n)}$

The base case checks out: the only path through zero other vertices are edges directly from u to v.

This is a bottom-up Dynamic programming algorithm.
We’ve basically just shown

• Theorem:
 If there are no negative cycles in a weighted directed graph G, then the Floyd-Warshall algorithm, running on G, returns a matrix $D^{(n)}$ so that:
 \[D^{(n)}[u,v] = \text{distance between } u \text{ and } v \text{ in } G. \]

• Running time: $O(n^3)$
 • Better than running Bellman-Ford n times!

• Storage:
 • Need to store two n-by-n arrays, and the original graph.

As with Bellman-Ford, we don’t really need to store all n of the $D^{(k)}$.

Work out the details of a proof!
What if there are negative cycles?

• Just like Bellman-Ford, Floyd-Warshall can detect negative cycles:
 • Negative cycle $\iff \exists v$ s.t. there is a path from v to v that goes through all n vertices that has cost < 0.
 • Negative cycle $\iff \exists v$ s.t. $D^{(n)}[v,v] < 0$.

• Algorithm:
 • Run Floyd-Warshall as before.
 • If there is some v so that $D^{(n)}[v,v] < 0$:
 • return negative cycle.
What have we learned?

• The Floyd-Warshall algorithm is another example of *dynamic programming*.

• It computes All Pairs Shortest Paths in a directed weighted graph in time $O(n^3)$.
Recap

• Two shortest-path algorithms:
 • Bellman-Ford for single-source shortest path
 • Floyd-Warshall for all-pairs shortest path

• **Dynamic programming!**
 • This is a fancy name for:
 • Break up an optimization problem into smaller problems
 • The optimal solutions to the sub-problems should be sub-
 solutions to the original problem.
 • Build the optimal solution iteratively by filling in a table of
 sub-solutions.
 • Take advantage of overlapping sub-problems!
Next time

• More examples of dynamic programming!

We will stop bullets with our action-packed coding skills, and also maybe find longest common subsequences.