Lecture 12
More Bellman-Ford, Floyd-Warshall, and Dynamic Programming!
Announcements

• HW5 due Friday
• Midterms have been graded!
 • Available on Gradescope.
 • Mean/Median: 66 *(it was a hard test!)*
 • Max: 97
 • Std. Dev: 14

• Please look at the solutions and come to office hours if you have questions about your midterm!
Recall

• A weighted directed graph:

 A shortest path from s to t is a directed path from s to t with the smallest cost.

 The single-source shortest path problem is to find the shortest path from s to v for all v in the graph.

 Weights on edges represent costs.

 The cost of a path is the sum of the weights along that path.
Last time

- Dijkstra’s algorithm!
- Bellman-Ford algorithm!
 - Both solve single-source shortest path in weighted graphs.

We didn’t quite finish with the Bellman-Ford algorithm so let’s do that now.
Bellman-Ford vs. Dijkstra

Bellman-Ford(G,s):

- $d[v] = \infty$ for all v in V
- $d[s] = 0$
- For $i=0,...,n-2$:
 - For u in V:
 - For v in u.outNeighbors:
 - $d[v] \leftarrow \min(d[v], d[u] + w(u,v))$

Dijkstra(G,s):

- While there are not-sure nodes:
 - Pick the not-sure node u with the smallest estimate $d[u]$.
 - For v in u.outNeighbors:
 - $d[v] \leftarrow \min(d[v], d[u] + w(u,v))$
 - Mark u as sure.

Instead of picking u cleverly, just update for all of the u’s.
For pedagogical reasons which we will see later today...

- We are actually going to change this to be dumber.
- Keep n arrays: $d^{(0)}$, $d^{(1)}$, ..., $d^{(n-1)}$

Bellman-Ford*(G,s):

- $d^{(0)}[v] = \infty$ for all v in V
- $d^{(0)}[s] = 0$
- For $i=0,\ldots,n-2$:
 - For u in V:
 - For v in u.outNeighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v] , d^{(i)}[u] + w(u,v))$
 - Then $\text{dist}(s,v) = d^{(n-1)}[v]$
Another way of writing this

- We are actually going to change this to be dumber.
- Keep n arrays: $d^{(0)}$, $d^{(1)}$, ..., $d^{(n-1)}$

Bellman-Ford*(G,s):

- $d^{(0)}[v] = \infty$ for all $v \in V$
- $d^{(0)}[s] = 0$
- For $i=0,...,n-2$:
 - For $v \in V$:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_{u \in v.inNbrs} \{d^{(i)}[u] + w(u,v)\})$
- Then $dist(s,v) = d^{(n-1)}[v]$
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- For $i=0,...,n-2$:
 - For v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v] , \min_{u} \{d^{(i)}[u] + w(u,v)\})$
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For $i=0,...,n-2$:

For v in V:

- $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_u \{d^{(i)}[u] + w(u,v)\})$

Diagram:

- Source: Gates
- Destinations: Packard, CS161, Union, Dish
- Distances:
 - Gates to Packard: 1
 - Gates to CS161: 1
 - Gates to Union: 22
 - Gates to Dish: 20
 - Packard to Dish: 25
 - Union to Dish: 25
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d^{(0)})</td>
<td>0</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(d^{(1)})</td>
<td>0</td>
<td>1</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>25</td>
</tr>
<tr>
<td>(d^{(2)})</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>(d^{(3)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d^{(4)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- For \(i=0,...,n-2\):
 - For \(v\) in \(V\):
 - \(d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_u \{d^{(i)}[u] + w(u,v)\})\)
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d^{(0)})</td>
<td>0</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(d^{(1)})</td>
<td>0</td>
<td>1</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>25</td>
</tr>
<tr>
<td>(d^{(2)})</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>(d^{(3)})</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>(d^{(4)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[i=2\]

- For \(i=0, \ldots, n-2:\)
 - For \(v\) in \(V:\)
 - \(d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v] , \min_u \{d^{(i)}[u] + w(u,v)\})\)
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
</tbody>
</table>

For $i=0,…,n-2$:

 For v in V:

 $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v] , \min_u \{d^{(i)}[u] + w(u,v)\})$

Diagram:*

- $i=3$

 - $d^{(3)}[v] = 23$

 - Network graph with edges and distances.

 - Gates to Packard: 2

 - Packard to Union: 4

 - Union to Dish: 20

 - Dish to Gates: 25

 - Dish to CS161: 22

 - CS161 to Dish: 6
Interpretation of $d^{(i)}$

$d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.
Why does Bellman-Ford work?

• Inductive hypothesis:
 • $d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.

• Conclusion:
Aside: simple paths

Assume there is no negative cycle.

• Then not only are there shortest paths, but actually there’s always a **simple** shortest path.

• A **simple path** in a graph with n vertices has at most n-1 edges in it.
Why does it work?

• Inductive hypothesis:
 • $d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.

• Conclusion(s):
 • $d^{(n-1)}[v]$ is equal to the cost of the shortest path between s and v with at most $n-1$ edges.
 • If there are no negative cycles, $d^{(n-1)}[v]$ is equal to the cost of the shortest path.

Notice that negative edge weights are fine. Just not negative cycles.
Note on implementation

- Don’t actually keep all n arrays around.
- Just keep two at a time: “last round” and “this round”
This seems much slower than Dijkstra

• And it is:

Running time $O(mn)$

• However, it’s also more flexible in a few ways.
 • Can handle negative edges
 • If we keep on doing these iterations, then changes in the network will propagate through.

• For $i=0,...,n-2$:
 • For v in V:
 • $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v] , \min_{u \text{ in } v.\text{nbrs}} \{d^{(i)}[u] + w(u,v)\})$
 • Then $\text{dist}(s,v) = d^{(n-1)}[v]$
Negative cycles

This is not looking good!

For i=0,…,n-2:
 For v in V:
 \[d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_u \text{in v.nbrs} \{d^{(i)}[u] + w(u,v)\}) \]
Negative edge weights

For i=0,...,n-2:
 For v in V:
 \[d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v] , \min_{u \in v.nbrs} \{ d^{(i)}[u] + w(u,v) \}) \]

But we can tell that it’s not looking good:

\[d^{(5)} \]

Some stuff changed!
Negative cycles in Bellman-Ford

• If there are no negative cycles:
 • Everything works as it should, and stabilizes.
• If there are negative cycles:
 • Not everything works as it should...
 • Note: it couldn’t possibly work, since shortest paths aren’t well-defined if there are negative cycles.
 • The d[v] values will keep changing.
• Solution:
 • Go one round more and see if things change.
Bellman-Ford algorithm

Bellman-Ford*(G,s):

• $d^{(0)}[v] = \infty$ for all $v \in V$
• $d^{(0)}[s] = 0$
• For $i=0,...,n-1$:
 • For $v \in V$:
 • $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_{u \in v.\text{inNeighbors}} \{d^{(i)}[u] + w(u,v)\})$
• If $d^{(n-1)} \neq d^{(n)}$:
 • Return NEGATIVE CYCLE 😞
• Otherwise, $\text{dist}(s,v) = d^{(n-1)}[v]$

Running time: $O(mn)$
Bellman-Ford is also used in practice.

- eg, Routing Information Protocol (RIP) uses something like Bellman-Ford.
 - Older protocol, not used as much anymore.

- Each router keeps a table of distances to every other router.

- Periodically we do a Bellman-Ford update.
 - Aka, for an edge \((u,v)\):
 - \(d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i)}[u] + w(u,v))\)

- This means that if there are changes in the network, this will propagate. (maybe slowly...)
Recap: shortest paths

• BFS:
 • (+) $O(n+m)$
 • (-) only unweighted graphs

• Dijkstra’s algorithm:
 • (+) weighted graphs
 • (+) $O(n \log(n) + m)$ if you implement it right.
 • (-) no negative edge weights
 • (-) very “centralized” (need to keep track of all the vertices to know which to update).

• The Bellman-Ford algorithm:
 • (+) weighted graphs, even with negative weights
 • (+) can be done in a distributed fashion, every vertex using only information from its neighbors.
 • (-) $O(nm)$
Important thing about B-F for the rest of this lecture

\(d^{(i)}[v] \) is equal to the cost of the shortest path between \(s \) and \(v \) with at most \(i \) edges.

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d^{(0)})</td>
<td>0</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(d^{(1)})</td>
<td>0</td>
<td>1</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>25</td>
</tr>
<tr>
<td>(d^{(2)})</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>(d^{(3)})</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>(d^{(4)})</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
</tbody>
</table>
Bellman-Ford is an example of...

Dynamic Programming!

Today:

- Example of Dynamic programming:
 - Fibonacci numbers.
 - (And Bellman-Ford)
- What is dynamic programming, exactly?
 - And why is it called “dynamic programming”?
- Another example: Floyd-Warshall algorithm
 - An “all-pairs” shortest path algorithm
Pre-Lecture exercise: How not to compute Fibonacci Numbers

• Definition:
 • $F(n) = F(n-1) + F(n-2)$, with $F(0) = F(1) = 1$.
 • The first several are:
 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

• Question:
 • Given n, what is $F(n)$?
Candidate algorithm

```python
• def Fibonacci(n):
    • if n == 0 or n == 1:
        • return 1
    • return Fibonacci(n-1) + Fibonacci(n-2)
```

(Seems to work, according to the IPython notebook...)

Running time?

• $T(n) = T(n-1) + T(n-2) + O(1)$
• $T(n) \geq T(n-1) + T(n-1)$ for $n \geq 2$
• So $T(n)$ grows at least as fast as the Fibonacci numbers themselves...
• Fun fact, that’s like ϕ^n where $\phi = \frac{1+\sqrt{5}}{2}$ is the golden ratio.
• aka, **EXPONENTIALLY QUICKLY 😞**

See CLRS Problem 4-4 for a walkthrough of how fast the Fibonacci numbers grow!
What’s going on?
Consider Fib(8)

That’s a lot of repeated computation!
Maybe this would be better:

```python
def fasterFibonacci(n):
    F = [1, 1, None, None, ..., None ]
    \ F has length n
    for i = 2, ..., n:
    \ F[i] = F[i-1] + F[i-2]
    return F[n]
```

Much better running time!
This was an example of...

Dynamic Programming!
What is *dynamic programming*?

• It is an algorithm design paradigm
 • like divide-and-conquer is an algorithm design paradigm.

• Usually it is for solving *optimization problems*
 • eg, *shortest* path
 • (Fibonacci numbers aren’t an optimization problem, but they are a good example...)

Elements of dynamic programming

1. **Optimal sub-structure:**

 - Big problems break up into sub-problems.
 - Fibonacci: $F(i)$ for $i \leq n$
 - Bellman-Ford: Shortest paths with at most i edges for $i \leq n$
 - The solution to a problem can be expressed in terms of solutions to smaller sub-problems.
 - Fibonacci:
 \[
 F(i+1) = F(i) + F(i-1)
 \]
 - Bellman-Ford:
 \[
 d^{(i+1)}[v] \leftarrow \min \{ d^{(i)}[v], \min_u \{ d^{(i)}[u] + \text{weight}(u,v) \} \}
 \]

 Shortest path with at most i **edges from** s **to** v

 Shortest path with at most i-1 **edges from** s **to** u.
Elements of dynamic programming

2. Overlapping sub-problems:

• The sub-problems overlap a lot.
 • Fibonacci:
 • Lots of different $F[j]$ will use $F[i]$.
 • Bellman-Ford:
 • Lots of different entries of $d^{(i+1)}$ will use $d^{(i)}[v]$.

• This means that we can save time by solving a sub-problem just once and storing the answer.
Elements of dynamic programming

• Optimal substructure.
 • Optimal solutions to sub-problems are sub-solutions to the optimal solution of the original problem.

• Overlapping subproblems.
 • The subproblems show up again and again

• Using these properties, we can design a dynamic programming algorithm:
 • Keep a table of solutions to the smaller problems.
 • Use the solutions in the table to solve bigger problems.
 • At the end we can use information we collected along the way to find the solution to the whole thing.
Two ways to think about and/or implement DP algorithms

• Top down

• Bottom up

This picture isn’t hugely relevant but I like it.
Bottom up approach what we just saw.

• For Fibonacci:
 • Solve the small problems first
 • fill in $F[0], F[1]$
 • Then bigger problems
 • fill in $F[2]$
 • ...
 • Then bigger problems
 • fill in $F[n-1]$
• Then finally solve the real problem.
 • fill in $F[n]$
Bottom up approach
what we just saw.

• For Bellman-Ford:
 • Solve the small problems first
 • fill in \(d^{(0)}\)
 • Then bigger problems
 • fill in \(d^{(1)}\)
 • ...
 • Then bigger problems
 • fill in \(d^{(n-2)}\)
 • Then finally solve the real problem.
 • fill in \(d^{(n-1)}\)
Top down approach

• Think of it like a recursive algorithm.

• To solve the big problem:
 • Recurse to solve smaller problems
 • Those recurse to solve smaller problems
 • etc..

• The difference from divide and conquer:
 • Memo-ization
 • Keep track of what small problems you’ve already solved to prevent re-solving the same problem twice.
Example of top-down Fibonacci

- define a global list F = [1,1,None, None, ..., None]
- **def** Fibonacci(n):
 - **if** F[n] != None:
 - **return** F[n]
 - **else**:
 - F[n] = Fibonacci(n-1) + Fibonacci(n-2)
 - **return** F[n]

Memo-ization: Keeps track (in F) of the stuff you’ve already done.
Memo-ization visualization

Collapse repeated nodes and don’t do the same work twice!
• define a global list $F = [1, 1, \text{None}, \text{None}, \ldots, \text{None}]$

• def Fibonacci(n):
 • if $F[n] \neq \text{None}$:
 • return $F[n]$
 • else:
 • $F[n] = \text{Fibonacci}(n-1) + \text{Fibonacci}(n-2)$
 • return $F[n]$
What have we learned?

• **Dynamic programming:**
 • Paradigm in algorithm design.
 • Uses *optimal substructure*
 • Uses *overlapping subproblems*
 • Can be implemented *bottom-up* or *top-down*.
 • It’s a fancy name for a pretty common-sense idea:

> Don’t duplicate work if you don’t have to!
Why “dynamic programming”?

- Programming refers to finding the optimal “program.”
 - as in, a shortest route is a plan aka a program.
- Dynamic refers to the fact that it’s multi-stage.
- But also it’s just a fancy-sounding name.

Manipulating computer code in an action movie?
Why “*dynamic programming*”?

• Richard Bellman invented the name in the 1950’s.

• At the time, he was working for the RAND Corporation, which was basically working for the Air Force, and government projects needed flashy names to get funded.

• From Bellman’s autobiography:
 • “It’s impossible to use the word, dynamic, in the pejorative sense… I thought dynamic programming was a good name. It was something not even a Congressman could object to.”
Floyd-Warshall Algorithm

Another example of DP

• This is an algorithm for **All-Pairs Shortest Paths (APSP)**
 • That is, I want to know the shortest path from \(u \) to \(v \) for **ALL pairs** \(u,v \) of vertices in the graph.
 • Not just from a special single source \(s \).

<table>
<thead>
<tr>
<th>Source</th>
<th>s</th>
<th>u</th>
<th>v</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>u</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>v</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>t</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>0</td>
</tr>
</tbody>
</table>
Floyd-Warshall Algorithm
Another example of DP

• This is an algorithm for **All-Pairs Shortest Paths** (**APSP**)
 • That is, I want to know the shortest path from u to v for **ALL pairs** u, v of vertices in the graph.
 • Not just from a special single source s.

• **Naïve solution** (if we want to handle negative edge weights):
 • For all s in G:
 • Run Bellman-Ford on G starting at s.
 • Time $O(n \cdot nm) = O(n^2m)$,
 • may be as bad as n^4 if $m = n^2$

Can we do better?
Optimal substructure

Sub-problem(k-1):
For all pairs, u,v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in $\{1,\ldots,k-1\}$.

Let $D^{(k-1)}[u,v]$ be the solution to Sub-problem(k-1).

Label the vertices 1,2,...,n (We omit some edges in the picture below).

Our DP algorithm will fill in the n-by-n arrays $D^{(0)}, D^{(1)}, \ldots, D^{(n)}$ iteratively and then we’ll be done.

This is the shortest path from u to v through the blue set. It has length $D^{(k-1)}[u,v]$.
Optimal substructure

Sub-problem(k-1):
For all pairs, u, v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in \{1, ..., k-1\}.

Let \(D^{(k-1)}[u,v]\) be the solution to Sub-problem(k-1).

Question: How can we find \(D^{(k)}[u,v]\) using \(D^{(k-1)}\)?

Our DP algorithm will fill in the n-by-n arrays \(D^{(0)}, D^{(1)}, ..., D^{(n)}\) iteratively and then we'll be done.

Label the vertices 1,2,...,n (We omit some edges in the picture below).

This is the shortest path from u to v through the blue set. It has length \(D^{(k-1)}[u,v]\)
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, \ldots, k\}$.
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, ..., k\}$.

Case 1: we don’t need vertex k.

$$D^{(k)}[u,v] = D^{(k-1)}[u,v]$$
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, \ldots, k\}$.

Case 2: we need vertex k.

Vertices $1, \ldots, k$
Case 2 continued

• Suppose there are no negative cycles.
 • Then WLOG the shortest path from u to v through \{1,\ldots,k\} is simple.

• If that path passes through k, it must look like this:

• This path is the shortest path from u to k through \{1,\ldots,k-1\}.
 • sub-paths of shortest paths are shortest paths

• Same for this path.

\[D^{(k)}[u,v] = D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \]
How can we find \(D^{(k)}[u,v] \) using \(D^{(k-1)} \)?

\[
D^{(k)}[u,v] = \min\{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \}
\]

- **Case 1**: Cost of shortest path through \(\{1,\ldots,k-1\} \)
- **Case 2**: Cost of shortest path from \(u \) to \(k \) and then from \(k \) to \(v \) through \(\{1,\ldots,k-1\} \)

Optimal substructure:
- We can solve the big problem using smaller problems.

Overlapping sub-problems:
- \(D^{(k-1)}[k,v] \) can be used to help compute \(D^{(k)}[u,v] \) for lots of different \(u \)’s.
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

- $D^{(k)}[u,v] = \min\{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \}$

- Case 1: Cost of shortest path through \{1,...,k-1\}
- Case 2: Cost of shortest path from u to k and then from k to v through \{1,...,k-1\}

- Using our **Dynamic programming** paradigm, this immediately gives us an algorithm!
Floyd-Warshall algorithm

• Initialize n-by-n arrays $D^{(k)}$ for $k = 0, \ldots, n$
 - $D^{(k)}[u,u] = 0$ for all u, for all k
 - $D^{(k)}[u,v] = \infty$ for all $u \neq v$, for all k
 - $D^{(0)}[u,v] = \text{weight}(u,v)$ for all (u,v) in E.

• For $k = 1, \ldots, n$:
 - For pairs u,v in V^2:
 - $D^{(k)}[u,v] = \min\{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \}$

• Return $D^{(n)}$

The base case checks out: the only path through zero other vertices are edges directly from u to v.

This is a bottom-up Dynamic programming algorithm.
We’ve basically just shown

• Theorem:
 If there are no negative cycles in a weighted directed graph G, then the Floyd-Warshall algorithm, running on G, returns a matrix $D^{(n)}$ so that:

 \[D^{(n)}[u,v] = \text{distance between } u \text{ and } v \text{ in } G. \]

• Running time: $O(n^3)$
 • Better than running BF n times!
 • Not really better than running Dijkstra n times.
 • But it’s simpler to implement and handles negative weights.

• Storage:
 • Need to store two n-by-n arrays, and the original graph.
 As with Bellman-Ford, we don’t really need to store all n of the $D^{(k)}$. #
What if there are negative cycles?

- Just like Bellman-Ford, Floyd-Warshall can detect negative cycles:
 - Negative cycle $\iff \exists v \text{ s.t. there is a path from } v \text{ to } v \text{ that goes through all } n \text{ vertices that has cost } < 0.$
 - Negative cycle $\iff \exists v \text{ s.t. } D^{(n)}[v,v] < 0.$

- Algorithm:
 - Run Floyd-Warshall as before.
 - If there is some v so that $D^{(n)}[v,v] < 0$:
 - return negative cycle.
What have we learned?

• The Floyd-Warshall algorithm is another example of *dynamic programming*.

• It computes All Pairs Shortest Paths in a directed weighted graph in time $O(n^3)$.
Another Example of DP?

• Longest simple path (say all edge weights are 1):

What is the longest simple path from s to t?
This is an optimization problem...

• Can we use Dynamic Programming?
• Optimal Substructure?
 • Longest path from s to t = longest path from s to a
 + longest path from a to t?

NOPE!
This doesn’t give optimal sub-structure
Optimal solutions to subproblems don’t give us an optimal solution to the big problem. (At least if we try to do it this way).

• The subproblems we came up with aren’t independent:
 • Once we’ve chosen the longest path from a to t
 • which uses b,
 • our longest path from s to a shouldn’t be allowed to use b
 • since b was already used.

• Actually, the longest simple path problem is NP-complete.
 • We don’t know of any polynomial-time algorithms for it, DP or otherwise!
Recap

• Two more shortest-path algorithms:
 • Bellman-Ford for single-source shortest path
 • Floyd-Warshall for all-pairs shortest path

• *Dynamic programming*!
 • This is a fancy name for:
 • Break up an optimization problem into smaller problems
 • The optimal solutions to the sub-problems should be sub-solutions to the original problem.
 • Build the optimal solution iteratively by filling in a table of sub-solutions.
 • Take advantage of overlapping sub-problems!
Next time

• More examples of *dynamic programming*!

We will stop bullets with our action-packed coding skills, and also maybe find longest common subsequences.

Before next time

• Pre-lecture exercise: finding optimal substructure