Lecture 13

More dynamic programming!

Longest Common Subsequences, Knapsack, and (if time) independent sets in trees.
Announcements

• Midterms are graded!
 • Mean: 76
 • Median: 77
 • Std. Dev: 12

• The midterm was meant to be hard, and you guys did really well!

• HW5 due Friday!
• HW6 released Friday!
Announcement

• I messed up the Bellman-Ford pseudocode on Monday!
 • Sorry! Thanks to all those who pointed it out.
 • Should be fixed on the slides now.
Last time

- Not coding in an action movie.
Last time

- Dynamic programming is an algorithm design paradigm.

- Basic idea:
 - Identify **optimal sub-structure**
 - Optimum to the big problem is built out of optima of small sub-problems
 - Take advantage of **overlapping sub-problems**
 - Only solve each sub-problem once, then use it again and again
 - Keep track of the solutions to sub-problems in a table as you build to the final solution.
Today

• Examples of dynamic programming:
 1. Longest common subsequence
 2. Knapsack problem
 • Two versions!
 3. Independent sets in trees
 • If we have time...
 • (If not the slides will be there as a reference)
The goal of this lecture

• For you to get **really bored** of dynamic programming
Longest Common Subsequence

• How similar are these two species?

DNA: AGCCCTAAGGGCTACCTAGCTT
DNA: GACAGCCTACAAAGCGTTAGCTTG
Longest Common Subsequence

• How similar are these two species?

DNA: AGCCCTAAAGGCTACCTAGCTT

DNA: GACAGCCTACAAGCGTTAGCTT

• Pretty similar, their DNA has a long common subsequence:

AGCCTAAGCTTAGCTT
Longest Common Subsequence

• Subsequence:
 • BDFH is a subsequence of ABCDEFGH

• If X and Y are sequences, a common subsequence is a sequence which is a subsequence of both.
 • BDFH is a common subsequence of ABCDEFGH and of ABDFGHI

• A longest common subsequence…
 • ...is a common subsequence that is longest.
 • The longest common subsequence of ABCDEFGH and ABDFGHI is ABDFGH.
We sometimes want to find these

- Applications in **bioinformatics**
- The unix command **diff**
- Merging in version control
 - **svn**, **git**, etc...
Recipe for applying Dynamic Programming

• **Step 1:** Identify optimal substructure.

• **Step 2:** Find a recursive formulation for the length of the longest common subsequence.

• **Step 3:** Use dynamic programming to find the length of the longest common subsequence.

• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.

• **Step 5:** If needed, code this up like a reasonable person.
Step 1: Optimal substructure

Prefixes:

X

A C G G T

Y

A C G C T T T A

Notation: denote this prefix ACGC by Y_4

- Our sub-problems will be finding LCS’s of prefixes to X and Y.
- Let $C[i,j] = length_of_LCS(X_i, Y_j)$

Examples:

- $C[2,3] = 2$
- $C[4,4] = 3$
Optimal substructure ctd.

• Subproblem:
 • finding LCS’s of prefixes of X and Y.

• Why is this a good choice?
 • As we will see, there’s some relationship between LCS’s of prefixes and LCS’s of the whole things.
 • These subproblems overlap a lot.
Recipe for applying Dynamic Programming

• **Step 1:** Identify optimal substructure.

• **Step 2:** Find a **recursive formulation** for the length of the longest common subsequence.

• **Step 3:** Use **dynamic programming** to find the length of the longest common subsequence.

• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual LCS**.

• **Step 5:** If needed, **code this up like a reasonable person**.
Goal

• Write $C[i,j]$ in terms of the solutions to smaller sub-problems

$$C[i,j] = \text{length_of_LCS}(X_i, Y_j)$$
Two cases

Case 1: $X[i] = Y[j]$

- Our sub-problems will be finding LCS’s of prefixes to X and Y.
- Let $C[i,j] = \text{length_of_LCS}(X_i, Y_j)$.

Then $C[i,j] = 1 + C[i-1,j-1]$.

- because $\text{LCS}(X_i, Y_j) = \text{LCS}(X_{i-1}, Y_{j-1})$ followed by A.

These are the same
Two cases

Case 2: \(X[i] \neq Y[j]\)

- Our sub-problems will be finding LCS’s of prefixes to \(X\) and \(Y\).
- Let \(C[i,j] = \text{length_of_LCS}(X_i, Y_j)\)

\[
\begin{align*}
X_i & \quad A \quad C \quad G \quad G \quad T \\
Y_j & \quad A \quad C \quad G \quad C \quad T \quad T \quad A
\end{align*}
\]

- Then \(C[i,j] = \max\{ C[i-1,j], C[i,j-1] \} \).
 - either \(\text{LCS}(X_i,Y_j) = \text{LCS}(X_{i-1},Y_j)\) and \(T\) is not involved,
 - or \(\text{LCS}(X_i,Y_j) = \text{LCS}(X_i,Y_{j-1})\) and \(A\) is not involved,
 - (maybe both are not involved, that’s covered by the “or”).
Recursive formulation of the optimal solution

• $C[i,j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\
\max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0
\end{cases}$
Recipe for applying Dynamic Programming

• **Step 1:** Identify **optimal substructure.**

• **Step 2:** Find a **recursive formulation** for the length of the longest common subsequence.

• **Step 3:** Use **dynamic programming** to find the length of the longest common subsequence.

• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual LCS.**

• **Step 5:** If needed, **code this up like a reasonable person.**
LCS DP

- **LCS**\((X, Y)\):
 - \(C[i,0] = C[0,j] = 0\) for all \(i = 0,\ldots,m\), \(j=0,\ldots,n\).
 - For \(i = 1,\ldots,m\) and \(j = 1,\ldots,n\):
 - If \(X[i] = Y[j]\):
 - \(C[i,j] = C[i-1,j-1] + 1\)
 - Else:
 - \(C[i,j] = \max\{ C[i,j-1], C[i-1,j] \} \)

Running time: \(O(nm)\)
Example

\[
C[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\
\max\{C[i, j - 1], C[i - 1, j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0
\end{cases}
\]
Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>A</td>
<td>C</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Y</td>
<td>A</td>
<td>C</td>
<td>T</td>
<td>G</td>
</tr>
</tbody>
</table>

\[
C[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\
\max\{C[i, j - 1], C[i - 1, j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0
\end{cases}
\]

So the LCM of \(X\) and \(Y\) has length 3.
Recipe for applying Dynamic Programming

• **Step 1:** Identify optimal substructure.

• **Step 2:** Find a recursive formulation for the length of the longest common subsequence.

• **Step 3:** Use dynamic programming to find the length of the longest common subsequence.

• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.

• **Step 5:** If needed, code this up like a reasonable person.
Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>A</td>
<td>C</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Y</td>
<td>A</td>
<td>C</td>
<td>T</td>
<td>G</td>
</tr>
</tbody>
</table>

\[
C[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\
\max\{C[i, j - 1], C[i - 1, j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0
\end{cases}
\]
Example

\[
C[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\
\max\{ C[i, j - 1], C[i - 1, j] \} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0
\end{cases}
\]
Example

Once we’ve filled this in, we can work backwards.

\[
C[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\
\max\{C[i, j - 1], C[i - 1, j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0
\end{cases}
\]
Example

\[
C[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\
\max\{C[i, j - 1], C[i - 1, j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0
\end{cases}
\]

That 3 must have come from the 3 above it.

• Once we’ve filled this in, we can work backwards.
Example

\[C[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\
\max\{C[i, j - 1], C[i - 1, j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0
\end{cases} \]

- Once we’ve filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

This 3 came from that 2 – we found a match!
Example

\[C[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\
\max\{C[i, j - 1], C[i - 1, j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0
\end{cases} \]

- Once we’ve filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!

That 2 may as well have come from this other 2.
Example

\[C[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\
\max\{C[i, j - 1], C[i - 1, j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0
\end{cases} \]

- Once we’ve filled this in, we can work backwards.
- A diagonal jump means that we found an element of the LCS!
Once we’ve filled this in, we can work backwards.

A diagonal jump means that we found an element of the LCS!
Example

Once we’ve filled this in, we can work backwards.

A diagonal jump means that we found an element of the LCS!

This is the LCS!
Finding an LCS

• See CLRS for pseudocode
• Takes time $O(mn)$ to fill the table
• Takes time $O(n + m)$ on top of that to recover the LCS
 • We walk up and left in an n-by-m array
 • We can only do that for $n + m$ steps.
• Altogether, we can find $LCS(X,Y)$ in time $O(mn)$.
Recipe for applying Dynamic Programming

• **Step 1:** Identify **optimal substructure**.

• **Step 2:** Find a **recursive formulation** for the length of the longest common subsequence.

• **Step 3:** Use **dynamic programming** to find the length of the longest common subsequence.

• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual LCS**.

• **Step 5:** If needed, **code this up like a reasonable person**.
This pseudocode actually isn’t so bad

- If we are only interested in the length of the LCS we can do a bit better on space:
 - Since we go across the table one-row-at-a-time, we can only keep two rows if we want.
- If we want to recover the LCS, we need to keep the whole table.

- **Can we do better** than $O(mn)$ time?
 - A bit better.
 - By a log factor or so.
 - But doing much better (polynomially better) is an open problem!
 - If you can do it let me know :D
What have we learned?

• We can find LCS(X,Y) in time O(nm)
 • if |Y|=n, |X|=m

• We went through the steps of coming up with a dynamic programming algorithm.
 • We kept a 2-dimensional table, breaking down the problem by decrementing the length of X and Y.
Example 2: Knapsack Problem

• We have n items with weights and values:

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turtle</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>Light</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Watermelon</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Taco</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>Fire truck</td>
<td>11</td>
<td>35</td>
</tr>
</tbody>
</table>

• And we have a knapsack:
 • it can only carry so much weight:

Capacity: 10
• Unbounded Knapsack:
 • Suppose I have infinite copies of all of the items.
 • What’s the most valuable way to fill the knapsack?

- Total weight: 10
- Total value: 42

• 0/1 Knapsack:
 • Suppose I have only one copy of each item.
 • What’s the most valuable way to fill the knapsack?

- Total weight: 9
- Total value: 35
Some notation

Item: [turtle emoji] [light bulb emoji] [watermelon emoji] [fire truck emoji]

Weight: W_1 W_2 W_3 \ldots W_n

Value: V_1 V_2 V_3 \ldots V_n

Capacity: W
Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a recursive formulation for the value of the optimal solution.
- **Step 3:** Use dynamic programming to find the value of the optimal solution.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- **Step 5:** If needed, code this up like a reasonable person.
Optimal substructure

• Sub-problems:
 • Unbounded Knapsack with a smaller knapsack.
 • \(K[x] = \text{value you can fit in a knapsack of capacity } x \)

First solve the problem for small knapsacks

Then larger knapsacks

Then larger knapsacks
Optimal substructure

• Suppose this is an optimal solution for capacity x:

Say that the optimal solution contains at least one copy of item i.

• Then this optimal for capacity $x - w_i$:

Why?
Optimal substructure

• Suppose this is an optimal solution for capacity x:

 Say that the optimal solution contains at least one copy of item i.

 • Then this optimal for capacity x - w_i:

 If I could do better than the second solution, then adding a turtle to that improvement would improve the first solution.

 • Capacity x
 Value V

 Capacity x − w_i
 Value V − v_i
Recipe for applying Dynamic Programming

• **Step 1:** Identify *optimal substructure*.

• **Step 2:** Find a *recursive formulation* for the value of the optimal solution.

• **Step 3:** Use *dynamic programming* to find the value of the optimal solution.

• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.

• **Step 5:** If needed, code this up like a reasonable person.
Recursive relationship

• Let $K[x]$ be the optimal value for capacity x.

$$K[x] = \max_i \{ K[x - w_i] + v_i \}$$

- (And $K[x] = 0$ if the maximum is empty).
 - That is, if there are no i so that $w_i \leq x$.
Recipe for applying Dynamic Programming

• **Step 1:** Identify optimal substructure.

• **Step 2:** Find a recursive formulation for the value of the optimal solution.

• **Step 3:** Use dynamic programming to find the value of the optimal solution.

• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.

• **Step 5:** If needed, code this up like a reasonable person.
Let’s write a bottom-up DP algorithm

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - for x = 1, ..., W:
 - K[x] = 0
 - for i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{ K[x], K[x - w_i] + v_i \}$
 - return K[W]

Running time: $O(nW)$

Why does this work?
Because our recursive relationship makes sense.
Can we do better?

• Writing down W takes $\log(W)$ bits.
• Writing down all n weights takes at most $n\log(W)$ bits.
• Input size: $n\log(W)$.
 • Maybe we could have an algorithm that runs in time $O(n\log(W))$ instead of $O(nW)$?
 • Or even $O(n^{1000000} \log^{1000000}(W))$?

• Open problem!
 • (But probably the answer is no...otherwise $P = NP$)
Recipe for applying Dynamic Programming

- **Step 1:** Identify *optimal substructure*.
- **Step 2:** Find a *recursive formulation* for the value of the optimal solution.
- **Step 3:** Use *dynamic programming* to find the value of the optimal solution.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can *find the actual solution*.
- **Step 5:** If needed, *code this up like a reasonable person*.
Let’s write a bottom-up DP algorithm

• UnboundedKnapsack(W, n, weights, values):
 • $K[0] = 0$
 • for $x = 1, \ldots, W$:
 • $K[x] = 0$
 • for $i = 1, \ldots, n$:
 • if $w_i \leq x$:
 • $K[x] = \max\{ K[x], K[x - w_i] + v_i \}$
 • return $K[W]$

$K[x] = \max_i \{ \text{bag} + \text{turtle} \}
= \max_i \{ K[x - w_i] + v_i \}$
Let’s write a bottom-up DP algorithm

• UnboundedKnapsack(W, n, $weights$, $values$):
 • $K[0] = 0$
 • $ITEMS[0] = \emptyset$
 • for $x = 1, ..., W$:
 • $K[x] = 0$
 • for $i = 1, ..., n$:
 • if $w_i \leq x$:
 • $K[x] = \max\{ K[x], K[x - w_i] + v_i \}$
 • If $K[x]$ was updated:
 • $ITEMS[x] = ITEMS[x - w_i] \cup \{ \text{item } i \}$
 • return $ITEMS[W]$

$K[x] = \max_i \{ \text{ } + \text{ } \}$

$= \max_i \{ K[x - w_i] + v_i \}$
• **UnboundedKnapsack**\((W, n, \text{weights}, \text{values})\):
 - \(K[0] = 0\)
 - \(\text{ITEMS}[0] = \emptyset\)
 - for \(x = 1, \ldots, W:\)
 - \(K[x] = 0\)
 - for \(i = 1, \ldots, n:\)
 - \(\text{if } w_i \leq x:\)
 - \(K[x] = \max\{ K[x], K[x - w_i] + v_i \} \)
 - If \(K[x]\) was updated:
 - \(\text{ITEMS}[x] = \text{ITEMS}[x - w_i] \cup \{ \text{item } i \} \)
 - return \(\text{ITEMS}[W]\)

Example

<table>
<thead>
<tr>
<th>K</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEMS</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Item:

- Item: 🐢
- Weight: 1
- Value: 1

Item: 🌟

- Item: 💡
- Weight: 2
- Value: 4

Item: 🍏

- Item: 🍏
- Weight: 3
- Value: 6

Capacity: 4
Example

UnboundedKnapsack(W, n, $weights$, $values$):

- $K[0] = 0$
- $ITEMS[0] = \emptyset$
- for $x = 1, \ldots, W$:
 - $K[x] = 0$
 - for $i = 1, \ldots, n$:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x - w_i] + v_i\}$
 - if $K[x]$ was updated:
 - $ITEMS[x] = ITEMS[x - w_i] \cup \{\text{item } i\}$
- return $ITEMS[W]$

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turtle</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Light</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Watermelon</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Capacity: 4

$ITEMS[1] = ITEMS[0] + \text{Turtle}$
Example

UnboundedKnapsack($W, n, weights, values$):
- $K[0] = 0$
- $ITEMS[0] = \emptyset$
- for $x = 1, ..., W$:
 - $K[x] = 0$
 - for $i = 1, ..., n$:
 - if $w_i \leq x$:
 - $K[x] = \max\{ K[x], K[x - w_i] + v_i \}$
 - If $K[x]$ was updated:
 - $ITEMS[x] = ITEMS[x - w_i] \cup \{ \text{item } i \}$
- return $ITEMS[W]$

<table>
<thead>
<tr>
<th>Item:</th>
<th>Weight:</th>
<th>Value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turtle</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Light Bulb</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Watermelon</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Capacity: 4
Example

- UnboundedKnapsack\((W, n, weights, values)\):
 - \(K[0] = 0\)
 - \(ITEMS[0] = \emptyset\)
 - for \(x = 1, \ldots, W\):
 - \(K[x] = 0\)
 - for \(i = 1, \ldots, n\):
 - if \(w_i \leq x\):
 - \(K[x] = \max\{K[x], K[x - w_i] + v_i\}\)
 - If \(K[x]\) was updated:
 - \(ITEMS[x] = ITEMS[x - w_i] \cup \{\text{item } i\}\)
 - return \(ITEMS[W]\)

\[
\begin{array}{|c|c|c|c|c|}
\hline
& 0 & 1 & 2 & 3 & 4 \\
\hline
K & 0 & 1 & 4 & & \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{ITEMS} & \text{Turtle} & \text{Light Bulb} & & \\
\hline
\end{array}
\]

\[
\text{ITEMS}[2] = \text{ITEMS}[0] + \text{Light Bulb}
\]

Item:
- Turtle
- Light Bulb
- Watermelon

Weight:
- 1
- 2
- 3

Value:
- 1
- 4
- 6

Capacity: 4
Example

\begin{itemize}
 \item \textbf{UnboundedKnapsack}(W, n, weights, values):
 \begin{itemize}
 \item K[0] = 0
 \item ITEMS[0] = ∅
 \item for x = 1, ..., W:
 \begin{itemize}
 \item K[x] = 0
 \item for i = 1, ..., n:
 \begin{itemize}
 \item if w_i \leq x:
 \begin{itemize}
 \item K[x] = max\{ K[x], K[x - w_i] + v_i \}
 \end{itemize}
 \item If K[x] was updated:
 \begin{itemize}
 \item ITEMS[x] = ITEMS[x - w_i] \cup \{ \text{item } i \}
 \end{itemize}
 \end{itemize}
 \end{itemize}
 \item return ITEMS[W]
 \end{itemize}
\end{itemize}

\begin{tabular}{|c|c|c|c|c|}
\hline
K & 0 & 1 & 2 & 3 & 4 \\
\hline
0 & 1 & 4 & 5 & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline
ITEMS & & & & \\
\hline
\hline
& & & & \\
\hline
\end{tabular}

\begin{itemize}
 \item Item:
 \begin{itemize}
 \item Turtle
 \item Lightbulb
 \item Watermelon
 \end{itemize}
 \item Weight:
 \begin{itemize}
 \item 1
 \item 2
 \item 3
 \end{itemize}
 \item Value:
 \begin{itemize}
 \item 1
 \item 4
 \item 6
 \end{itemize}
\end{itemize}

Capacity: 4
Example

UnboundedKnapsack(W, n, weights, values):

- $K[0] = 0$
- ITEMS[0] = ∅
- for $x = 1, \ldots, W$:
 - $K[x] = 0$
 - for $i = 1, \ldots, n$:
 - if $w_i \leq x$:
 - $K[x] = \max\{K[x], K[x - w_i] + v_i\}$
 - If $K[x]$ was updated:
 - ITEMS[x] = ITEMS[x - w_i] ∪ {item i}
- return ITEMS[W]

ITEMS[3] = ITEMS[0] + 🍉
Example

<table>
<thead>
<tr>
<th>K</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEMS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>🐢💡🍉</td>
</tr>
</tbody>
</table>

• UnboundedKnapsack(W, n, weights, values):
 • K[0] = 0
 • ITEMS[0] = ∅
 • for x = 1, ..., W:
 • K[x] = 0
 • for i = 1, ..., n:
 • if w_i ≤ x:
 • K[x] = max{ K[x], K[x − w_i] + v_i }
 • If K[x] was updated:
 • ITEMS[x] = ITEMS[x − w_i] U { item i }
 • return ITEMS[W]

- Item: 🐢💡🍉
- Weight: 1 2 3
- Value: 1 4 6

Capacity: 4
Example

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>ITEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **UnboundedKnapsack** \((W, n, \text{weights, values})\):
 - \(K[0] = 0\)
 - \(\text{ITEMS}[0] = \emptyset\)
 - For \(x = 1, \ldots, W\):
 - \(K[x] = 0\)
 - For \(i = 1, \ldots, n\):
 - If \(w_i \leq x\):
 - \(K[x] = \max\{ K[x], K[x - w_i] + v_i \} \)
 - If \(K[x]\) was updated:
 - \(\text{ITEMS}[x] = \text{ITEMS}[x - w_i] \cup \{ \text{item } i \} \)
 - Return \(\text{ITEMS}[W]\)

Item:
- Turtle
- Light Bulb
- Watermelon

Weight:
- 1
- 2
- 3

Value:
- 1
- 4
- 6

Capacity: 4
Recipe for applying Dynamic Programming

• **Step 1:** Identify **optimal substructure.**

• **Step 2:** Find a **recursive formulation** for the value of the optimal solution.

• **Step 3:** Use **dynamic programming** to find the value of the optimal solution.

• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual solution.**

• **Step 5:** If needed, **code this up like a reasonable person.**
What have we learned?

• We can solve unbounded knapsack in time $O(nW)$.
 • If there are n items and our knapsack has capacity W.

• We again went through the steps to create DP solution:
 • We kept a one-dimensional table, creating smaller problems by making the knapsack smaller.
Unbounded Knapsack:
- Suppose I have **infinite copies** of all of the items.
- What’s the **most valuable way to fill the knapsack**?

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>🐢</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>🔴</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>🍉</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>🌯</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>🍚</td>
<td>11</td>
<td>35</td>
</tr>
</tbody>
</table>

- **Total weight**: 10
- **Total value**: 42

0/1 Knapsack:
- Suppose I have **only one copy** of each item.
- What’s the **most valuable way to fill the knapsack**?

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔴</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>🍉</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>🌯</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>🌯</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>🍚</td>
<td>11</td>
<td>35</td>
</tr>
</tbody>
</table>

- **Total weight**: 9
- **Total value**: 35
Recipe for applying Dynamic Programming

• **Step 1:** Identify **optimal substructure**.

• **Step 2:** Find a **recursive formulation** for the value of the optimal solution.

• **Step 3:** Use **dynamic programming** to find the value of the optimal solution.

• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual solution**.

• **Step 5:** If needed, **code this up like a reasonable person**.
Optimal substructure: try 1

• Sub-problems:
 • Unbounded Knapsack with a smaller knapsack.

First solve the problem for small knapsacks

Then larger knapsacks

Then larger knapsacks
This won’t quite work...

• We are only allowed **one copy of each item**.
• The sub-problem needs to “know” what items we’ve used and what we haven’t.

I can’t use any turtles...
Optimal substructure: try 2

• Sub-problems:
 • 0/1 Knapsack with fewer items.

First solve the problem with few items

Then more items

Then yet more items

We’ll still increase the size of the knapsacks.

(We’ll keep a two-dimensional table).
Our sub-problems:

• Indexed by x and j

$K[x,j] = \text{optimal solution for a knapsack of size } x \text{ using only the first } j \text{ items.}$
Relationship between sub-problems

- Want to write $K[x,j]$ in terms of smaller sub-problems.

$K[x,j] = \text{optimal solution for a knapsack of size } x \text{ using only the first } j \text{ items.}$
Two cases

- **Case 1**: Optimal solution for \(j \) items does not use item \(j \).
- **Case 2**: Optimal solution for \(j \) items does use item \(j \).

\[K[x,j] = \text{optimal solution for a knapsack of size } x \text{ using only the first } j \text{ items.} \]
Two cases

- **Case 1:** Optimal solution for j items does not use item j.

First j items

What lower-indexed problem should we solve to solve this problem?

Capacity x
Value V
Use only the first j items
Two cases

• **Case 1**: Optimal solution for \(j\) items does not use item \(j\).

 - Use only the first \(j\) items.
 - Then this is an optimal solution for \(j-1\) items:

 - Use only the first \(j-1\) items.
Two cases

- **Case 2**: Optimal solution for \(j \) items uses item \(j \).

First \(j \) items

What lower-indexed problem should we solve to solve this problem?

- Weight \(w_j \)
- Value \(v_j \)

Capacity \(x \)
Value \(V \)
Use only the first \(j \) items
Two cases

- **Case 2**: Optimal solution for \(j\) items uses item \(j\).

Then this is an optimal solution for \(j-1\) items and a smaller knapsack:

- First \(j\) items
 - Use only the first \(j\) items
 - Weight \(w_j\)
 - Value \(v_j\)
 - Capacity \(x\)
 - Value \(V\)
- First \(j-1\) items
 - Use only the first \(j-1\) items
 - Capacity \(x - w_j\)
 - Value \(V - v_j\)
Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a recursive formulation for the value of the optimal solution.
- **Step 3:** Use dynamic programming to find the value of the optimal solution.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- **Step 5:** If needed, code this up like a reasonable person.
Recursive relationship

• Let $K[x,j]$ be the optimal value for:
 • capacity x,
 • with j items.

$$K[x,j] = \max\{ K[x, j-1], K[x - w_j, j-1] + v_j \}$$

 Case 1
 Case 2

• (And $K[x,0] = 0$ and $K[0,j] = 0$).
Recipe for applying Dynamic Programming

• **Step 1:** Identify **optimal substructure**.

• **Step 2:** Find a **recursive formulation** for the value of the optimal solution.

• **Step 3:** Use **dynamic programming** to find the value of the optimal solution.

• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual solution**.

• **Step 5:** If needed, **code this up like a reasonable person**.
Bottom-up DP algorithm

- Zero-One-Knapsack\((W, n, w, v)\):
 - \(K[x,0] = 0\) for all \(x = 0, ..., W\)
 - \(K[0,i] = 0\) for all \(i = 0, ..., n\)
 - for \(x = 1, ..., W\):
 - for \(j = 1, ..., n\):
 - \(K[x,j] = K[x, j-1]\) \(\text{Case 1}\)
 - if \(w_j \leq x\):
 - \(K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}\) \(\text{Case 2}\)
 - return \(K[W,n]\)

Running time \(O(nW)\)
Example

<table>
<thead>
<tr>
<th></th>
<th>x=0</th>
<th>x=1</th>
<th>x=2</th>
<th>x=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>j=0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j=1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j=2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j=3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Zero-One-Knapsack**\((W, n, w, v)\):
 - \(K[x,0] = 0\) for all \(x = 0,...,W\)
 - \(K[0,i] = 0\) for all \(i = 0,...,n\)
 - \(for x = 1,...,W:\)
 - \(for j = 1,...,n:\)
 - \(K[x,j] = K[x, j-1]\)
 - if \(w_j \leq x:\)
 - \(K[x,j] = \max\{ K[x,j], K[x – w_j, j-1] + v_j \}\)
 - return \(K[W,n]\)

Current entry

Relevant previous entry

Item:

<table>
<thead>
<tr>
<th></th>
<th>Weight</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Capacity: 3
Example

Zero-One-Knapsack(W, n, w, v):
 • K[0,0] = 0 for all x = 0,…,W
 • K[0,i] = 0 for all i = 0,…,n
 • for x = 1,…,W:
 • for j = 1,…,n:
 • K[x,j] = K[x, j-1]
 • if w_j ≤ x:
 • K[x,j] = max{ K[x,j], K[x – w_j, j-1] + v_j }
 • return K[W,n]

Item:
 - Turtle (1)
 - Light bulb (2)
 - Watermelon (3)

Weight:
 - Turtle: 1
 - Light bulb: 2
 - Watermelon: 3

Value:
 - Turtle: 1
 - Light bulb: 4
 - Watermelon: 6

Capacity: 3
Example

<table>
<thead>
<tr>
<th></th>
<th>x=0</th>
<th>x=1</th>
<th>x=2</th>
<th>x=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>j=0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j=1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>j=2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j=3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Zero-One-Knapsack** \((W, n, w, v)\):
 - \(K[x,0] = 0\) for all \(x = 0, \ldots, W\)
 - \(K[0,i] = 0\) for all \(i = 0, \ldots, n\)
 - **for** \(x = 1, \ldots, W\):
 - **for** \(j = 1, \ldots, n\):
 - \(K[x,j] = K[x, j-1]\)
 - **if** \(w_j \leq x\):
 - \(K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \} \)
 - **return** \(K[W,n]\)

Item:
- **Turtle:** 1
- **Lightbulb:** 2
- **Watermelon:** 3

Weight: 1 2 3

Value: 1 4 6

Capacity: 3
Zero-One-Knapsack(W, n, w, v):

- $K[x,0]$ = 0 for all $x = 0,...,W$
- $K[0,i]$ = 0 for all $i = 0,...,n$

for $x = 1,...,W$:

- for $j = 1,...,n$:
 - $K[x,j] = K[x, j-1]$
 - if $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}$

return $K[W,n]$

Example

<table>
<thead>
<tr>
<th></th>
<th>x=0</th>
<th>x=1</th>
<th>x=2</th>
<th>x=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>j=0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j=1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j=2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j=3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Item:**
 - **Weight:** 1, 2, 3
 - **Value:** 1, 4, 6

- **Capacity:** 3
Example

Zero-One-Knapsack(W, n, w, v):

- \(K[x,0] = 0 \) for all \(x = 0, \ldots, W \)
- \(K[0,i] = 0 \) for all \(i = 0, \ldots, n \)

\[
\text{for } x = 1, \ldots, W:
\]

\[
\text{for } j = 1, \ldots, n:
\]

- \(K[x,j] = K[x, j-1] \)
- if \(w_j \leq x \):
 \[
 K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}
 \]

- \text{return } K[W,n]

<table>
<thead>
<tr>
<th>x=0</th>
<th>x=1</th>
<th>x=2</th>
<th>x=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>j=0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j=1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>j=2</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>j=3</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- current entry
- relevant previous entry

Item:

- **Weight:** 1 2 3
- **Value:** 1 4 6

Capacity: 3
Example

Zero-One-Knapsack(W, n, w, v):
- $K[0, 0] = 0$ for all $x = 0, \ldots, W$
- $K[0, i] = 0$ for all $i = 0, \ldots, n$
- for $x = 1, \ldots, W$:
 - for $j = 1, \ldots, n$:
 - $K[x, j] = K[x, j-1]$
 - if $w_j \leq x$:
 - $K[x, j] = \max\{ K[x, j], K[x - w_j, j-1] + v_j \}$
- return $K[W, n]$

```
<table>
<thead>
<tr>
<th></th>
<th>x=0</th>
<th>x=1</th>
<th>x=2</th>
<th>x=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>j=0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j=1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>j=2</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>j=3</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Current entry

Previous entry

Item:

- Weight: 1, 2, 3
- Value: 1, 4, 6

Capacity: 3
Example

<table>
<thead>
<tr>
<th></th>
<th>x=0</th>
<th>x=1</th>
<th>x=2</th>
<th>x=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>j=0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j=1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>j=2</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>j=3</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Zero-One-Knapsack(W, n, w, v):
 - \(K[x,0] = 0 \) for all \(x = 0, \ldots, W \)
 - \(K[0,i] = 0 \) for all \(i = 0, \ldots, n \)
 - \(\text{for } x = 1, \ldots, W: \)
 - \(\text{for } j = 1, \ldots, n: \)
 - \(K[x,j] = K[x, j-1] \)
 - \(\text{if } w_j \leq x: \)
 - \(K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \} \)
 - \(\text{return } K[W,n] \)

Current entry

Relevant previous entry

Item:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight:</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Value:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Capacity: 3
Example

Zero-One-Knapsack \(W, n, w, v \):
- \(K[x,0] = 0 \) for all \(x = 0, ..., W \)
- \(K[0,i] = 0 \) for all \(i = 0, ..., n \)
- for \(x = 1, ..., W \):
 - for \(j = 1, ..., n \):
 - \(K[x,j] = K[x, j-1] \)
 - if \(w_j \leq x \):
 - \(K[x,j] = \max\{ K[x,j], K[x – w_j, j-1] + v_j \} \)
- return \(K[W,n] \)

<table>
<thead>
<tr>
<th></th>
<th>(j=0)</th>
<th>(j=1)</th>
<th>(j=2)</th>
<th>(j=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x=0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(x=1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(x=2)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(x=3)</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Item:
 - **Weight:** 1
 - **Value:** 1
- **Capacity:** 3

- current entry
- relevant previous entry
Example

Zero-One-Knapsack(W, n, w, v):
• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:
 • for j = 1,…,n:
 • K[x,j] = K[x, j-1]
 • if w_j ≤ x:
 • K[x,j] = max{ K[x,j], K[x – w_j, j-1] + v_j }
• return K[W,n]

Item:
Weight: 1 2 3
Value: 1 4 6
Capacity: 3
Example

Zero-One-Knapsack(W, n, w, v):

- $K[x,0] = 0$ for all $x = 0,...,W$
- $K[0,i] = 0$ for all $i = 0,...,n$
- for $x = 1,...,W$:
 - for $j = 1,...,n$:
 - $K[x,j] = K[x, j-1]$
 - if $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x – w_j, j-1] + v_j \}$
- return $K[W,n]$

Item:
- Weight:
 - 1
 - 2
 - 3
- Value:
 - 1
 - 4
 - 6

Capacity: 3
Example

<table>
<thead>
<tr>
<th></th>
<th>(x=0)</th>
<th>(x=1)</th>
<th>(x=2)</th>
<th>(x=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j=0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(j=1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(j=2)</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(j=3)</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Item:
- Turtles: 1
- Lightbulbs: 4
- Watermelon: 6

Weight:
- Turtles: 1
- Lightbulbs: 2
- Watermelon: 3

Capacity: 3

Zero-One-Knapsack \((W, n, w, v)\):

- \(K[x,0] = 0\) for all \(x = 0,...,W\)
- \(K[0,i] = 0\) for all \(i = 0,...,n\)
- **for** \(x = 1,...,W\):
 - **for** \(j = 1,...,n\):
 - \(K[x,j] = K[x, j-1]\)
 - **if** \(w_j \leq x\):
 - \(K[x,j] = \max\{ K[x,j], K[x – w_j, j-1] + v_j \} \)

return \(K[W,n]\)
Zero-One-Knapsack (W, n, w, v):
- \(K[x,0] = 0 \) for all \(x = 0, \ldots, W \)
- \(K[0,i] = 0 \) for all \(i = 0, \ldots, n \)
- for \(x = 1, \ldots, W \):
 - for \(j = 1, \ldots, n \):
 - \(K[x,j] = K[x, j-1] \)
 - if \(w_j \leq x \):
 - \(K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \} \)
- return \(K[W,n] \)

Example

<table>
<thead>
<tr>
<th>Item:</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight:</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Value:</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Current entry

<table>
<thead>
<tr>
<th>j=0</th>
<th>j=1</th>
<th>j=2</th>
<th>j=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x=0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x=1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x=2</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>x=3</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Relevant previous entry
Zero-One-Knapsack(W, n, w, v):

- $K[x,0] = 0$ for all $x = 0,...,W$
- $K[0,i] = 0$ for all $i = 0,...,n$
- for $x = 1,...,W$:
 - for $j = 1,...,n$:
 - $K[x,j] = K[x, j-1]$
 - if $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x – w_j, j-1] + v_j \}$
- return $K[W,n]$
Example

<table>
<thead>
<tr>
<th>x=0</th>
<th>x=1</th>
<th>x=2</th>
<th>x=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

- **Current entry**
- **Relevant previous entry**

Zero-One-Knapsack(W, n, w, v):
- \(K[x,0] = 0 \) for all \(x = 0, \ldots, W \)
- \(K[0,i] = 0 \) for all \(i = 0, \ldots, n \)
- for \(x = 1, \ldots, W \):
 - for \(j = 1, \ldots, n \):
 - \(K[x,j] = K[x, j-1] \)
 - if \(w_j \leq x \):
 - \(K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \} \)
- return \(K[W,n] \)

Item:
- Turtles
- Lights
- Watermelon

Weight:
- 1
- 2
- 3

Value:
- 1
- 4
- 6

Capacity: 3
Example

<table>
<thead>
<tr>
<th></th>
<th>x=0</th>
<th>x=1</th>
<th>x=2</th>
<th>x=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>j=0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j=1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>j=2</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>j=3</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Item:

- **Weight:**
 - Turtle: 1
 - Light Bulb: 2
 - Watermelon: 3

Value:

- Turtle: 1
- Light Bulb: 4
- Watermelon: 6

Capacity: 3

Zero-One-Knapsack

- **K[x,0] = 0** for all **x = 0,...,W**
- **K[0,i] = 0** for all **i = 0,...,n**
- **for** **x = 1,...,W:**
 - **for** **j = 1,...,n:**
 - **K[x,j] = K[x, j-1]**
 - **if** **w_j ≤ x:**
 - **K[x,j] = max{ K[x,j], K[x – w_j, j-1] + v_j }**

- **return** **K[W,n]**
Example

Zero-One-Knapsack(W, n, w, v):

- $K[x,0] = 0$ for all $x = 0,...,W$
- $K[0,i] = 0$ for all $i = 0,...,n$
- for $x = 1,...,W$:
 - for $j = 1,...,n$:
 - $K[x,j] = K[x, j-1]$
 - if $w_j \leq x$:
 - $K[x,j] = \max\{K[x,j], K[x - w_j, j-1] + v_j\}$
- return $K[W,n]$

Item:
- Weight: 1 2 3
- Value: 1 4 6

Capacity: 3
Zero-One-Knapsack(W, n, w, v):

1. $K[x,0] = 0$ for all $x = 0,\ldots,W$
2. $K[0,i] = 0$ for all $i = 0,\ldots,n$
3. \textbf{for } $x = 1,\ldots,W$:
 - \textbf{for } $j = 1,\ldots,n$:
 - $K[x,j] = K[x, j-1]$
 - if $w_j \leq x$:
 - $K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}$
4. \textbf{return } $K[W,n]$

So the optimal solution is to put one watermelon in your knapsack!
Recipe for applying Dynamic Programming

- **Step 1**: Identify optimal substructure.
- **Step 2**: Find a recursive formulation for the value of the optimal solution.
- **Step 3**: Use dynamic programming to find the value of the optimal solution.
- **Step 4**: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- **Step 5**: If needed, code this up like a reasonable person.

You do this one! (We did it on the slide in the previous example, just not in the pseudocode!)
What have we learned?

• We can solve 0/1 knapsack in time $O(nW)$.
 • If there are n items and our knapsack has capacity W.

• We again went through the steps to create DP solution:
 • We kept a two-dimensional table, creating smaller problems by restricting the set of allowable items.
Question

• How did we know which substructure to use in which variant of knapsack?

Answer in retrospect:

This one made sense for unbounded knapsack because it doesn’t have any memory of what items have been used.

VS.

In 0/1 knapsack, we can only use each item once, so it makes sense to leave out one item at a time.

Operational Answer: try some stuff, see what works!
Example 3: Independent Set
if we still have time

An independent set is a set of vertices so that no pair has an edge between them.

• Given a graph with weights on the vertices...

• What is the independent set with the largest weight?
Actually this problem is **NP-complete**. So we are unlikely to find an efficient algorithm.

- But if we also assume that the graph is a **tree**...

Problem:

find a maximal independent set in a tree (with vertex weights).
Recipe for applying Dynamic Programming

• **Step 1:** Identify optimal substructure.

• **Step 2:** Find a *recursive formulation* for the value of the optimal solution

• **Step 3:** Use dynamic programming to find the value of the optimal solution

• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.

• **Step 5:** If needed, code this up like a reasonable person.
Optimal substructure

• **Subtrees** are a natural candidate.

• There are **two cases**:
 1. The root of this tree is **not** in a maximal independent set.
 2. Or it is.
Case 1:
the root is not in an maximal independent set

• Use the optimal solution from these smaller problems.
Case 2: the root is in an maximal independent set

• Then its children can’t be.
• Below that, use the optimal solution from these smaller subproblems.
Recipe for applying Dynamic Programming

• **Step 1:** Identify optimal substructure.
• **Step 2:** Find a recursive formulation for the value of the optimal solution.
• **Step 3:** Use dynamic programming to find the value of the optimal solution
• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
• **Step 5:** If needed, code this up like a reasonable person.
Recursive formulation: try 1

• Let $A[u]$ be the weight of a maximal independent set in the tree rooted at u.

• $A[u] = \max \left\{ \right.
 \begin{array}{ll}
 \text{weight}(u) + \sum_{v \in u.\text{grandchildren}} A[v], \\
 \sum_{v \in u.\text{children}} A[v]
 \end{array}
\right.$

When we implement this, how do we keep track of this term?
Recursive formulation: try 2

Keep two arrays!

- Let $A[u]$ be the weight of a maximal independent set in the tree rooted at u.
- Let $B[u] = \sum_{v \in u \text{. children}} A[v]$

$A[u] = \max \left\{ \begin{array}{l} \sum_{v \in u \text{. children}} A[v] \\
\text{weight}(u) + \sum_{v \in u \text{. children}} B[v] \end{array} \right\}$
Recipe for applying Dynamic Programming

• **Step 1:** Identify optimal substructure.

• **Step 2:** Find a recursive formulation for the value of the optimal solution.

• **Step 3:** Use dynamic programming to find the value of the optimal solution.

• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.

• **Step 5:** If needed, code this up like a reasonable person.
A top-down DP algorithm

- **MIS_subtree(u):**
 - **if** u is a leaf:
 - A[u] = weight(u)
 - B[u] = 0
 - **else:**
 - **for** v in u.children:
 - MIS_subtree(v)
 - A[u] = max{ ∑_{v ∈ u.children} A[v], weight(u) + ∑_{v ∈ u.children} B[v] }
 - B[u] = ∑_{v ∈ u.children} A[v]

- **MIS(T):**
 - MIS_subtree(T.root)
 - return A[T.root]

Initialize global arrays A, B that we will use in all of the recursive calls.

Running time?
- We visit each vertex once, and at every vertex we do O(1) work:
 - Make a recursive call
 - Look stuff up in tables
- Running time is O(|V|)
Why is this different from divide-and-conquer?
That’s always worked for us with tree problems before...

• **MIS_subtree(u):**
 • **if** u is a leaf:
 • **return** weight(u)
 • **else:**
 • **for** v in u.children:
 • MIS_subtree(v)
 • **return** \(\max\{ \sum_{v \in u.\text{children}} \text{MIS_subtree}(v), \text{weight}(u) + \sum_{v \in u.\text{grandchildren}} \text{MIS_subtree}(v) \} \)

• **MIS(T):**
 • **return** MIS_subtree(T.root)
Why is this different from divide-and-conquer?

That’s always worked for us with tree problems before...

How often would we ask about the subtree rooted here?

Once for **this node** and once for **this one**.

But we then ask about **this node** twice, here and here.

This will blow up exponentially without using dynamic programming to take advantage of **overlapping subproblems**.
Recipe for applying Dynamic Programming

• **Step 1:** Identify optimal substructure.
• **Step 2:** Find a recursive formulation for the value of the optimal solution.
• **Step 3:** Use dynamic programming to find the value of the optimal solution.
• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
• **Step 5:** If needed, code this up like a reasonable person.

You do this one!
What have we learned?

• We can find maximal independent sets in trees in time $O(|V|)$ using dynamic programming!

• For this example, it was natural to implement our DP algorithm in a top-down way.
Recap

• Today we saw examples of how to come up with dynamic programming algorithms.
 • Longest Common Subsequence
 • Knapsack two ways
 • (If time) maximal independent set in trees.

• There is a recipe for dynamic programming algorithms.
Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a recursive formulation for the value of the optimal solution.
- **Step 3:** Use dynamic programming to find the value of the optimal solution.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- **Step 5:** If needed, code this up like a reasonable person.
Recap

• Today we saw examples of how to come up with dynamic programming algorithms.
 • Longest Common Subsequence
 • Knapsack two ways
 • (If time) maximal independent set in trees.

• There is a **recipe** for dynamic programming algorithms.

• Sometimes coming up with the right substructure takes some creativity
 • You’ll get lots of practice on Homework 6! 😊
Next week

• Greedy algorithms!

Before next time

• Pre-lecture exercise: Greed is good!