Lecture 15

Minimum Spanning Trees
Announcements

• HW6 Due 30 minutes ago
• HW7 out now!
 • It’s the last one!!!!! Woohoo!!!!!

• No class Monday!
 • It’s Memorial Day!
 • Have a nice long weekend!
Last time

• **Greedy algorithms**
 • Make a series of choices.
 • Choose this activity, then that one, ..
 • Never backtrack.
 • Show that, at each step, your choice does not rule out success.
 • At every step, there exists an optimal solution consistent with the choices we’ve made so far.
 • At the end of the day:
 • you’ve built only one solution,
 • never having ruled out success,
 • **so your solution must be correct.**
Today

• Greedy algorithms for **Minimum Spanning Tree**.

• Agenda:
 1. What is a Minimum Spanning Tree?
 2. Short break to introduce some graph theory tools
 3. Prim’s algorithm
 4. Kruskal’s algorithm
Minimum Spanning Tree

Say we have an undirected weighted graph

A spanning tree is a tree that connects all of the vertices.

For today, we will focus on connected graphs!
Minimum Spanning Tree

Say we have an undirected weighted graph

The cost of a spanning tree is the sum of the weights on the edges.

A spanning tree is a tree that connects all of the vertices.

This is a spanning tree. It has cost 67

A tree is a connected graph with no cycles!
Minimum Spanning Tree

Say we have an undirected weighted graph

A spanning tree is a tree that connects all of the vertices.

A tree is a connected graph with no cycles!

This is also a spanning tree. It has cost 37
Minimum Spanning Tree

Say we have an undirected weighted graph

A spanning tree is a tree that connects all of the vertices.
Minimum Spanning Tree

Say we have an undirected weighted graph

A spanning tree is a tree that connects all of the vertices.

This is a minimum spanning tree.

It has cost 37

minimum

of minimal cost
Why MSTs?

- Network design
 - Connecting cities with roads/electricity/telephone/...
- Cluster analysis
 - Eg, genetic distance
- Image processing
 - Eg, image segmentation
- Useful primitive
 - For other graph algs

Figure 2: Fully parsimonious minimal spanning tree of 933 SNPs for 282 isolates of Y. pestis colored by location. Morelli et al. Nature genetics 2010
How to find an MST?

• Today we’ll see two greedy algorithms.
• In order to prove that these greedy algorithms work, we’ll show something like:

 Suppose that our choices so far are consistent with an MST.

 Then the next greedy choice that we make is still consistent with an MST.

• This is not the only way to prove that these algorithms work!
 • See a different way in the Algorithms Illuminated reading.
Let’s brainstorm some greedy algorithms!

Following your pre-lecture exercise...

Think-pair-share!
(You already did the thinking, so go ahead and pair+share).
Brief aside

for a discussion of cuts in graphs!
Cuts in graphs

• A cut is a partition of the vertices into two parts:

This is the cut “\{A,B,D,E\} and \{C,I,H,G,F\}”
Cuts in graphs

- One or both of the two parts might be disconnected.

This is the cut “\{B,C,E,G,H\} and \{A,D,I,F\}”
Cuts in graphs

• This is *not* a cut. Cuts are partitions of vertices.
Let S be a set of edges in G

- We say a cut respects S if no edges in S cross the cut.
- An edge crossing a cut is called light if it has the smallest weight of any edge crossing the cut.

S is the set of thick orange edges.
Let S be a set of edges in G

- We say a cut respects S if no edges in S cross the cut.
- An edge crossing a cut is called light if it has the smallest weight of any edge crossing the cut.

S is the set of thick orange edges

This edge is light
Lemma

- Let S be a set of edges, and consider a cut that respects S.
- Suppose there is an MST containing S.
- Let $\{u,v\}$ be a light edge.
- Then there is an MST containing $S \cup \{u,v\}$
Lemma

• Let S be a set of edges, and consider a cut that respects S.
• Suppose there is an MST containing S.
• Let $\{u,v\}$ be a light edge.
• Then there is an MST containing $S \cup \{u,v\}$

Aka:

If we haven’t ruled out the possibility of success so far, then adding a light edge still won’t rule it out.
Proof of Lemma

• Assume that we have:
 • a cut that respects S
Proof of Lemma

• Assume that we have:
 • a cut that respects S
 • S is part of some MST T.

• Say that $\{u,v\}$ is light.
 • lowest cost crossing the cut
Proof of Lemma

• Assume that we have:
 • a cut that respects S
 • S is part of some MST T.

• Say that $\{u,v\}$ is light.
 • lowest cost crossing the cut

• If $\{u,v\}$ is in T, we are done.
 • T is an MST containing both $\{u,v\}$ and S.
Proof of Lemma

• Assume that we have:
 • a cut that respects S
 • S is part of some MST T.

• Say that $\{u,v\}$ is light.
 • lowest cost crossing the cut

• Say $\{u,v\}$ is not in T.

• Note that adding $\{u,v\}$ to T will make a cycle.

Claim: Adding any additional edge to a spanning tree will create a cycle.

Proof: Both endpoints are already in the tree and connected to each other.
Proof of Lemma

• Assume that we have:
 • a cut that respects S
 • S is part of some $\text{MST } T$.

• Say that $\{u,v\}$ is light.
 • lowest cost crossing the cut

• Say $\{u,v\}$ is not in T.

• Note that adding $\{u,v\}$ to T will make a cycle.

• There is at least one other edge, $\{x,y\}$, in this cycle crossing the cut.

Claim: Adding any additional edge to a spanning tree will create a cycle.

Proof: Both endpoints are already in the tree and connected to each other.
Proof of Lemma ctd.

• Consider swapping \{u,v\} for \{x,y\} in T.
 • Call the resulting tree T'.
Proof of Lemma ctd.

• Consider swapping \{u,v\} for \{x,y\} in T.
 • Call the resulting tree T'.

• **Claim**: T' is still an MST.
 • It is still a spanning tree (why?)
 • It has cost at most that of T
 • because $\{u,v\}$ was light.
 • T had minimal cost.
 • So T' does too.

• So T' is an MST containing S and $\{u,v\}$.
 • This is what we wanted.
Lemma

- Let S be a set of edges, and consider a cut that respects S.
- Suppose there is an MST containing S.
- Let $\{u,v\}$ be a light edge.
- Then there is an MST containing $S \cup \{u,v\}$
End aside

Back to MSTs!
Back to MSTs

• How do we find one?
• Today we’ll see two greedy algorithms.

• The strategy:
 • Make a series of choices, adding edges to the tree.
 • Show that each edge we add is safe to add:
 • we do not rule out the possibility of success
 • we will choose light edges crossing cuts and use the Lemma.
 • Keep going until we have an MST.
Idea 1

Start growing a tree, greedily add the shortest edge we can to grow the tree.
Idea 1
Start growing a tree, greedily add the shortest edge we can to grow the tree.
Idea 1
Start growing a tree, greedily add the shortest edge we can to grow the tree.
Idea 1
Start growing a tree, greedily add the shortest edge we can to grow the tree.
Idea 1

Start growing a tree, greedily add the shortest edge we can to grow the tree.
Idea 1

Start growing a tree, greedily add the shortest edge we can to grow the tree.
Idea 1
Start growing a tree, greedily add the shortest edge we can to grow the tree.
Idea 1
Start growing a tree, greedily add the shortest edge we can to grow the tree.
Idea 1

Start growing a tree, greedily add the shortest edge we can to grow the tree.
We’ve discovered
Prim’s algorithm!

- slowPrim(G = (V,E), starting vertex s):
 - Let (s,u) be the lightest edge coming out of s.
 - MST = { (s,u) }
 - verticesVisited = { s, u }
 - while |verticesVisited| < |V|:
 - find the lightest edge {x,v} in E so that:
 - x is in verticesVisited
 - v is not in verticesVisited
 - add {x,v} to MST
 - add v to verticesVisited
 - return MST

Naively, the running time is O(nm):
- For each of ≤n iterations of the while loop:
 - Go through all the edges.
Two questions

1. Does it work?
 • That is, does it actually return a MST?

2. How do we actually implement this?
 • the pseudocode above says “slowPrim”...
Does it work?

• We need to show that our greedy choices don’t rule out success.
• That is, at every step:
 • If there exists an MST that contains all of the edges S we have added so far...
 • ...then when we make our next choice \{u,v\}, there is still an MST containing S and \{u,v\}.

• Now it is time to use our lemma!
Lemma

- Let S be a set of edges, and consider a cut that respects S.
- Suppose there is an MST containing S.
- Let $\{u,v\}$ be a light edge.
- Then there is an MST containing $S \cup \{u,v\}$
Partway through Prim

• Assume that our choices S so far don’t rule out success
 • There is an MST consistent with those choices

How can we use our lemma to show that our next choice also does not rule out success?

Think-Pair-Share Terrapins
1 min. think
1 min. pair+share

Lemma

• Let S be a set of edges, and consider a cut that respects S.
• Suppose there is an MST containing S.
• Let $\{u,v\}$ be a light edge.
• Then there is an MST containing $S \cup \{u,v\}$

S is the set of edges selected so far.
Partway through Prim

• Assume that our choices S so far don’t rule out success
 • There is an MST consistent with those choices

• Consider the cut \{visited, unvisited\}
 • This cut respects S.

S is the set of edges selected so far.
Partway through Prim

- Assume that our choices S so far don’t rule out success
 - There is an MST consistent with these choices
- Consider the cut \{visited, unvisited\}
 - This cut respects S.
- The edge we add next is a light edge.
 - Least weight of any edge crossing the cut.

- By the Lemma, that edge is safe to add.
 - There is still an MST consistent with the new set of edges.
Hooray!

• Our greedy choices *don’t rule out success*.

• This is enough *(along with an argument by induction)* to guarantee correctness of Prim’s algorithm.
Formally(ish)

- **Inductive hypothesis:**
 - After adding the t’th edge, there exists an MST with the edges added so far.

- **Base case:**
 - After adding the 0’th edge, there exists an MST with the edges added so far. **YEP.**

- **Inductive step:**
 - If the inductive hypothesis holds for t (aka, the choices so far are safe), then it holds for $t+1$ (aka, the next edge we add is safe).
 - **That’s what we just showed.**

- **Conclusion:**
 - After adding the $n-1$’st edge, there exists an MST with the edges added so far.
 - At this point we have a spanning tree, so it better be minimal.
Two questions

1. Does it work?
 • That is, does it actually return a MST?
 • Yes!

2. How do we actually implement this?
 • the pseudocode above says “slowPrim”...
How do we actually implement this?

• Each vertex keeps:
 • the **distance** from itself to the **growing spanning tree** if you can get there in one edge.
 • how to get there.

I’m 7 away.
C is the closest.

I can’t get to the tree in one edge.
How do we actually implement this?

• Each vertex keeps:
 • the distance from itself to the growing spanning tree if you can get there in one edge.
 • how to get there.

• Choose the closest vertex, add it.
How do we actually implement this?

• Each vertex keeps:
 • the **distance** from itself to the **growing spanning tree** if you can get there in one edge.
 • **how to get there**.

• Choose the closest vertex, add it.

I’m 7 away.
C is the closest.

I can’t get to the tree in one edge.
How do we actually implement this?

• Each vertex keeps:
 • the **distance** from itself to the **growing spanning tree** if you can get there in one edge.
 • **how to get there.**

• Choose the closest vertex, add it.
• Update stored info.

I’m 7 away. C is the closest.

I’m 10 away. F is the closest.
Efficient implementation

Every vertex has a key and a parent

Until all the vertices are **reached:**

- **k[x]** is the distance of x from the growing tree
- Can’t reach x yet: x is “active”
- Can reach x: p[b] = a, meaning that a was the vertex that k[b] comes from.
Efficient implementation

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the **unreached** vertex u with the **smallest key**.

Can’t reach x yet
x is “active”
Can reach x

k[x] is the distance of x from the growing tree

p[b] = a, meaning that a was the vertex that k[b] comes from.
Efficient implementation

Every vertex has a key and a parent

Until all the vertices are reached:

- Activate the unreached vertex \(u \) with the smallest key.
- For each of \(u \)'s unreached neighbors \(v \):
 - \(k[v] = \min(k[v], \text{weight}(u,v)) \)
 - If \(k[v] \) updated, \(p[v] = u \)

Can’t reach \(x \) yet
\(x \) is “active”
Can reach \(x \)

\(k[x] \) is the distance of \(x \) from the growing tree

\(p[b] = a \), meaning that \(a \) was the vertex that \(k[b] \) comes from.
Efficient implementation

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the **unreached** vertex u with the **smallest key**.
- **for each** of u’s unreached neighbors v:
 - $k[v] = \min(k[v], \text{weight}(u,v))$
 - if $k[v]$ updated, $p[v] = u$
- Mark u as **reached**, and add $(p[u], u)$ to MST.

$k[x]$ is the distance of x from the growing tree

Can’t reach x yet

x is “active”

Can reach x

$p[b] = a$, meaning that a was the vertex that $k[b]$ comes from.
Efficient implementation
Every vertex has a key and a parent

Until all the vertices are reached:

- Activate the **unreached** vertex u with the smallest key.
- **for each** of u’s unreached neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as **reached**, and add (p[u],u) to MST.

k[x] is the distance of x from the growing tree
Can’t reach x yet
x is “active”
Can reach x

p[b] = a, meaning that a was the vertex that k[b] comes from.
Efficient implementation

Every vertex has a key and a parent

Until all the vertices are reached:

- Activate the **unreached** vertex \(u \) with the smallest key.
- **for each** of \(u \)'s unreached neighbors \(v \):
 - \(k[v] = \min(k[v], \text{weight}(u,v)) \)
 - if \(k[v] \) updated, \(p[v] = u \)
- Mark \(u \) as **reached**, and add \((p[u],u)\) to MST.

\(k[x] \) is the distance of \(x \) from the growing tree

Can’t reach \(x \) yet
\(x \) is “active”
Can reach \(x \)

\(p[b] = a \), meaning that \(a \) was the vertex that \(k[b] \) comes from.

Until all the vertices are reached:
Efficient implementation

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the **unreached** vertex \(u \) with the **smallest key**.
- **for each** of \(u \)'s unreached neighbors \(v \):
 - \(k[v] = \min(k[v], \text{weight}(u,v)) \)
 - if \(k[v] \) updated, \(p[v] = u \)
- Mark \(u \) as **reached**, and add \((p[u],u)\) to MST.

\(k[x] \) is the distance of \(x \) from the growing tree

Can’t reach \(x \) yet
\(x \) is “active”
Can reach \(x \)

\(p[b] = a \), meaning that \(a \) was the vertex that \(k[b] \) comes from.
Efficient implementation

Every vertex has a key and a parent

Until all the vertices are reached:

- Activate the unreached vertex \(u \) with the smallest key.
- For each of \(u \)'s unreached neighbors \(v \):
 - \(k[v] = \min(k[v], \text{weight}(u,v)) \)
 - If \(k[v] \) updated, \(p[v] = u \)
- Mark \(u \) as reached, and add \((p[u],u)\) to MST.
Efficient implementation

Every vertex has a key and a parent

Until all the vertices are reached:

- Activate the un-reached vertex u with the smallest key.
- For each of u’s un-reached neighbors v:
 - \(k[v] = \min(k[v], \text{weight}(u,v)) \)
 - if \(k[v] \) updated, \(p[v] = u \)
- Mark u as reached, and add \((p[u],u)\) to MST.
Efficient implementation
Every vertex has a key and a parent

Until all the vertices are reached:
 • Activate the unreached vertex u with the smallest key.
 • for each of u’s unreached neighbors v:
 • k[v] = min(k[v], weight(u,v))
 • if k[v] updated, p[v] = u
 • Mark u as reached, and add (p[u],u) to MST.

k[x] is the distance of x from the growing tree
Can’t reach x yet
x is “active”
Can reach x

p[b] = a, meaning that a was the vertex that k[b] comes from.
Efficient implementation

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the **unreached** vertex \(u \) with the **smallest key**.
- **for each** of \(u \)'s unreached neighbors \(v \):
 - \(k[v] = \min(k[v], \text{weight}(u,v)) \)
 - if \(k[v] \) updated, \(p[v] = u \)
- Mark \(u \) as **reached**, and **add** \((p[u],u)\) to MST.

\(k[x] \) is the distance of \(x \) from the growing tree.

Can’t reach \(x \) yet
\(x \) is “active”
Can reach \(x \)

\(p[b] = a \), meaning that \(a \) was the vertex that \(k[b] \) comes from.
Efficient implementation

Every vertex has a key and a parent

Until all the vertices are reached:

- Activate the unreached vertex \(u \) with the smallest key.
- for each of \(u \)'s unreached neighbors \(v \):
 - \(k[v] = \min(k[v], \text{weight}(u,v)) \)
 - if \(k[v] \) updated, \(p[v] = u \)
- Mark \(u \) as reached, and add \((p[u],u)\) to MST.
Efficient implementation

Every vertex has a key and a parent

Until all the vertices are reached:

- Activate the unreached vertex \(u \) with the smallest key.
- for each of \(u \)'s unreached neighbors \(v \):
 - \(k[v] = \min(k[v], \text{weight}(u,v)) \)
 - if \(k[v] \) updated, \(p[v] = u \)
- Mark \(u \) as reached, and add \((p[u], u)\) to MST.

\(k[x] \) is the distance of \(x \) from the growing tree

Can reach \(x \)

Can’t reach \(x \) yet

\(x \) is “active”

\(p[b] = a \), meaning that \(a \) was the vertex that \(k[b] \) comes from.
Efficient implementation
Every vertex has a key and a parent

Until all the vertices are reached:

- Activate the unreached vertex u with the smallest key.
- for each of u’s unreached neighbors v:
 - \(k[v] = \min(k[v], \text{weight}(u,v)) \)
 - if \(k[v] \) updated, \(p[v] = u \)
- Mark u as reached, and add \((p[u], u)\) to MST.

- x is "active"
- Can’t reach x yet
- Can reach x

\(k[x] \) is the distance of x from the growing tree

\(p[b] = a \), meaning that a was the vertex that \(k[b] \) comes from.
Efficient implementation
Every vertex has a key and a parent

Until all the vertices are reached:

- Activate the unreached vertex \(u \) with the smallest key.
- For each of \(u \)'s unreached neighbors \(v \):
 - \(k[v] = \min(k[v], \text{weight}(u,v)) \)
 - If \(k[v] \) updated, \(p[v] = u \)
- Mark \(u \) as reached, and add \((p[u],u)\) to MST.

\(k[x] \) is the distance of \(x \) from the growing tree

Can’t reach \(x \) yet
\(x \) is “active”
Can reach \(x \)

\(p[b] = a \), meaning that \(a \) was the vertex that \(k[b] \) comes from.
Efficient implementation
Every vertex has a key and a parent

Until all the vertices are reached:

- Activate the unreach**ed** vertex \(u \) with the smallest key.
- For each of \(u \)’s unreach**ed** neighbors \(v \):
 - \(k[v] = \min(k[v], \text{weight}(u,v)) \)
 - If \(k[v] \) updated, \(p[v] = u \)
- Mark \(u \) as reach**ed**, and add \((p[u], u)\) to MST.
Efficient implementation

Every vertex has a key and a parent

Until all the vertices are reached:

- Activate the **unreached** vertex u with the **smallest key**.
- For each of u’s unreached neighbors v:
 - $k[v] = \min(k[v], \text{weight}(u,v))$
 - If $k[v]$ updated, $p[v] = u$
- Mark u as **reached**, and add $(p[u], u)$ to MST.

$k[x]$ is the distance of x from the growing tree

Can’t reach x yet

x is “active”

Can reach x

$p[b] = a$, meaning that a was the vertex that $k[b]$ comes from.

Until all the vertices are reached:

2, 7, etc.
This should look pretty familiar

• Very similar to Dijkstra’s algorithm!

• **Differences:**
 1. Keep track of \(p[v] \) in order to return a tree at the end
 • But Dijkstra’s can do that too, that’s not a big difference.
 2. Instead of \(d[v] \) which we update by
 • \(d[v] = \min(d[v], d[u] + w(u,v)) \)
 we keep \(k[v] \) which we update by
 • \(k[v] = \min(k[v], w(u,v)) \)

• To see the difference, consider:
One thing that is similar:
Running time

- Exactly the same as Dijkstra:
 - $O(m \log(n))$ using a Red-Black tree as a priority queue.
 - $O(m + n \log(n))$ amortized time if we use a Fibonacci Heap*.

*See CS166
Two questions

1. Does it work?
 • That is, does it actually return a MST?
 • Yes!

2. How do we actually implement this?
 • the pseudocode above says “slowPrim”...
 • Implement it basically the same way we’d implement Dijkstra!
 • See IPython notebook for an implementation.
What have we learned?

• Prim’s algorithm greedily grows a tree
 • smells a lot like Dijkstra’s algorithm

• It finds a Minimum Spanning Tree!
 • in time $O(m\log(n))$ if we implement it with a Red-Black Tree.
 • In amortized time $O(m + n\log(n))$ with a Fibonacci heap.

• To prove it worked, we followed the same recipe for greedy algorithms we saw last time.
 • Show that, at every step, we don’t rule out success.
That’s not the only greedy algorithm for MST!
That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?
That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?
That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?
That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?
That’s not the only greedy algorithm.

What if we just always take the cheapest edge?

Whether or not it’s connected to what we have so far?
That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?
That’s not the only greedy algorithm.

What if we just always take the cheapest edge? Whether or not it’s connected to what we have so far?

That won’t cause a cycle.
That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

That won’t cause a cycle
That’s not the only greedy algorithm
what if we just always take the cheapest edge?
whether or not it’s connected to what we have so far?

That won’t cause a cycle
That’s not the only greedy algorithm. What if we just always take the cheapest edge? Whether or not it’s connected to what we have so far? That won’t cause a cycle.
That’s not the only greedy algorithm. What if we just always take the cheapest edge? Whether or not it’s connected to what we have so far? That won’t cause a cycle.
We’ve discovered
Kruskal’s algorithm!

• slowKruskal(G = (V,E)):
 • Sort the edges in E by non-decreasing weight.
 • MST = {}
 • for e in E (in sorted order):
 • if adding e to MST won’t cause a cycle:
 • add e to MST.
 • return MST

Naively, the running time is ???:
• For each of m iterations of the for loop:
 • Check if adding e would cause a cycle...
Two questions

1. Does it work?
 • That is, does it actually return a MST?

2. How do we actually implement this?
 • the pseudocode above says “slowKruskal”...
At each step of Kruskal’s, we are maintaining a forest.
At each step of Kruskal’s, we are maintaining a **forest**.
At each step of Kruskal’s, we are maintaining a forest.

When we add an edge, we merge two trees:
At each step of Kruskal’s, we are maintaining a forest.

When we add an edge, we merge two trees:
At each step of Kruskal’s, we are maintaining a forest.

A forest is a collection of disjoint trees.

When we add an edge, we merge two trees:

We never add an edge within a tree since that would create a cycle.
Keep the trees in a special data structure

“treehouse”?
Union-find data structure also called disjoint-set data structure

- Used for storing collections of sets
- Supports:
 - `makeSet(u)`: create a set \{u\}
 - `find(u)`: return the set that \(u\) is in
 - `union(u,v)`: merge the set that \(u\) is in with the set that \(v\) is in.

```plaintext
makeSet(x)
makeSet(y)
makeSet(z)
union(x,y)
```
Union-find data structure
also called disjoint-set data structure

• Used for storing collections of sets

• Supports:
 • `makeSet(u)`: create a set \{u\}
 • `find(u)`: return the set that u is in
 • `union(u,v)`: merge the set that u is in with the set that v is in.

```
makeSet(x)
makeSet(y)
makeSet(z)
union(x,y)
```
Union-find data structure
also called disjoint-set data structure

• Used for storing collections of sets

• Supports:
 • `makeSet(u)`: create a set \{u\}
 • `find(u)`: return the set that u is in
 • `union(u,v)`: merge the set that u is in with the set that v is in.

`makeSet(x)`
`makeSet(y)`
`makeSet(z)`
`union(x,y)`
`find(x)`
Kruskal pseudo-code

- \textbf{kruskal}(G = (V,E)):
 - Sort E by weight in non-decreasing order
 - \textbf{MST} = \{}
 // initialize an empty tree
 - \textbf{for} v in V:
 - \textbf{makeSet}(v)
 // put each vertex in its own tree in the forest
 - \textbf{for} (u,v) in E:
 - \textbf{if} \textbf{find}(u) \neq \textbf{find}(v):
 // if u and v are not in the same tree
 - add (u,v) to \textbf{MST}
 - \textbf{union}(u,v)
 // merge u’s tree with v’s tree
 - \textbf{return} \textbf{MST}
Once more...

To start, every vertex is in its own tree.
Once more...

Then start merging.
Once more...

Then start merging.
Once more...

Then start merging.
Once more…

Then start merging.
Once more...

Then start merging.

Stop when we have one big tree!
Running time

- Sorting the edges takes $O(m \log(n))$
 - In practice, if the weights are small integers we can use radixSort and take time $O(m)$

- For the rest:
 - n calls to `makeSet`
 - put each vertex in its own set
 - $2m$ calls to `find`
 - for each edge, `find` its endpoints
 - $n-1$ calls to `union`
 - we will never add more than $n-1$ edges to the tree,
 - so we will never call `union` more than $n-1$ times.

- Total running time:
 - Worst-case $O(m \log(n))$, just like Prim with an RBtree.
 - Closer to $O(m)$ if you can do radixSort

In practice, each of `makeSet`, `find`, and `union` run in constant time*
(See Algs. Illuminated, Section 15.6.4, for a simpler way which does `find` and `union` in time $O(\log n)$).

*technically, they run in amortized time $O(\alpha(n))$, where $\alpha(n)$ is the inverse Ackerman function. $\alpha(n) \leq 4$ provided that n is smaller than the number of atoms in the universe.
Two questions

1. Does it work?
 • That is, does it actually return a MST?

2. How do we actually implement this?
 • the pseudocode above says “slowKruskal”...
 • Worst-case running time $O(m\log(n))$ using a union-find data structure.

Now that we understand this “tree-merging” view, let’s do this one.
Does it work?

• We need to show that our greedy choices don’t rule out success.

• That is, at every step:
 • There exists an MST that contains all of the edges we have added so far.

• Now it is time to use our lemma! again!
Lemma

• Let S be a set of edges, and consider a cut that respects S.
• Suppose there is an MST containing S.
• Let $\{u,v\}$ be a light edge.
• Then there is an MST containing $S \cup \{u,v\}$
Partway through Kruskal

• Assume that our choices S so far don’t rule out success.
 • There is an MST extending them
• The next edge we add will merge two trees, T_1, T_2

S is the set of edges selected so far.
Partway through Kruskal

- Assume that our choices S so far don’t rule out success.
 - There is an MST extending them
- The next edge we add will merge two trees, T_1, T_2

How can we use our lemma to show that our next choice also does not rule out success?

Lemma
- Let S be a set of edges, and consider a cut that respects S.
- Suppose there is an MST containing S.
- Let $\{u,v\}$ be a light edge.
- Then there is an MST containing $S \cup \{u,v\}$

Think-Pair-Share Terrapins
1 minute think
1 minute pair+share

S is the set of edges selected so far.
Partway through Kruskal

- Assume that our choices S so far don’t rule out success.
 - There is an MST extending them

- The **next edge** we add will merge two trees, T_1, T_2

- Consider the cut $\{T_1, V - T_1\}$.
 - This cut respects S
 - Our **new edge is light** for the cut

S is the set of edges selected so far.
Partway through Kruskal

• Assume that our choices S so far don’t rule out success.
 • There is an MST extending them

• The next edge we add will merge two trees, T_1, T_2

• Consider the cut $\{T_1, V - T_1\}$.
 • This cut respects S
 • Our new edge is light for the cut

• By the Lemma, that edge is safe to add.
 • There is still an MST extending the new set

S is the set of edges selected so far.
Hooray!

• Our greedy choices don’t rule out success.

• This is enough (along with an argument by induction) to guarantee correctness of Kruskal’s algorithm.
Two questions

1. Does it work?
 • That is, does it actually return a MST?
 • Yes

2. How do we actually implement this?
 • the pseudocode above says “slowKruskal”...
 • Using a union-find data structure!
What have we learned?

• Kruskal’s algorithm greedily grows a forest
• It finds a Minimum Spanning Tree in time $O(m \log(n))$
 • if we implement it with a Union-Find data structure
 • if the edge weights are reasonably-sized integers and we ignore the inverse Ackerman function, basically $O(m)$ in practice.

• To prove it worked, we followed the same recipe for greedy algorithms we saw last time.
 • Show that, at every step, we don’t rule out success.
Compare and contrast

• Prim:
 • Grows a tree.
 • Time $O(m \log(n))$ with a red-black tree
 • Time $O(m + n \log(n))$ with a Fibonacci heap

• Kruskal:
 • Grows a forest.
 • Time $O(m \log(n))$ with a union-find data structure
 • If you can do radixSort on the edge weights, morally $O(m)$
Both Prim and Kruskal

• Greedy algorithms for MST.
• Similar reasoning:
 • Optimal substructure: subgraphs generated by cuts.
 • The way to make safe choices is to choose light edges crossing the cut.

S is the set of thick orange edges

This edge is light
Can we do better?
State-of-the-art MST on connected undirected graphs

• Karger-Klein-Tarjan 1995:
 • $O(m)$ time randomized algorithm

• Chazelle 2000:
 • $O(m \cdot \alpha(n))$ time deterministic algorithm

• Pettie-Ramachandran 2002:
 • $O\left(\text{The optimal number of comparisons you need to solve the problem, whatever that is...}\right)$ time deterministic algorithm

What is this number?
Do we need that silly $\alpha(n)$?
Open questions!
Recap

• Two algorithms for Minimum Spanning Tree
 • Prim’s algorithm
 • Kruskal’s algorithm

• Both are (more) examples of greedy algorithms!
 • Make a series of choices.
 • Show that at each step, your choice does not rule out success.
 • At the end of the day, you haven’t ruled out success, so you must be successful.
Next time (a WEEK from today)

- Min cuts and max flow!

Before next time

- Have a nice long weekend!
- Pre-lecture exercise: routing people across rickety bridges...