Lecture 16

max flows, min cuts, and Ford-Fulkerson
Announcements

• HW7 Due 30 minutes ago!
• HW8 out now!

Just kidding, there is no HW8!
You are all done with HW!
Announcements: Final exam!

• Exam 2 will be **Monday June 12, 3:30-6:30pm**
 • Location info will be emailed out soon-ish
 • There will be several locations, just like for the midterm
• The exam is technically cumulative, but with a heavy focus on second half of the quarter.
• Same deal as the midterm:
 • We will avoid (what we consider to be) questions that need “aha!” moments.
 • Skills that you can practice, like coming up with DP algorithms, proving greedy algorithms work, etc, are fair game.
 • One problem will be very similar to a HW problem.
 • You may have a “cheat sheet” (Two 2-sided pages)

• Want to start studying?
 • Bring questions to HW party this week!
 • Review sessions will be announced soon!
 • Practice exam will be out soon too!
Aside:

Public Service Announcement

• How to best prepare for the final?

• Bike Safety!
 • Wear a helmet!
 • Put your phone away while biking!
 • Use rotaries as intended!

not having a concussion during
What’s coming up in Week 10

• Monday:
 • Another EthiCS lecture by Dr. Diana Acosta-Navas!
 • If time, I’ll hang out and answer any questions that you have. Come with questions!

• Wednesday (last class!):
 • Real quick review
 • What’s next? A look at what’s to come if you keep taking algorithms classes!
End of announcements!
The plan for today

- Minimum s-t cuts
- Maximum s-t flows
- The Ford-Fulkerson Algorithm
 - Finds min cuts and max flows!
- Applications
 - Why do we want to find these things?

This lecture will skip a few proofs, and you are not responsible for the proofs for the final exam.

Lucky the lackadaisical lemur
Min cuts and max flows
Set-up for today

- Graphs are directed and edges have “capacities” (weights)
- We have a special “source” vertex \(s \) and “sink” vertex \(t \).
 - \(s \) has only outgoing edges
 - \(t \) has only incoming edges
An s-t cut is a cut which separates s from t.
An s-t cut
is a cut which separates s from t
An s-t cut
is a cut which separates s from t

• An edge **crosses the cut** if it goes from s’s side to t’s side.
An s-t cut is a cut which separates s from t.

- An edge **crosses the cut** if it goes from s’s side to t’s side.
- The **cost** (or capacity) of a cut is the sum of the capacities of the edges that cross the cut.

This cut has cost $4 + 2 + 10 = 16$. This edge does not cross the cut; it’s going in the wrong direction.
A minimum **s-t cut** is a cut which separates s from t with minimum cost.

- **Question**: how do we find a minimum s-t cut?

This cut has cost $4 + 3 + 4 = 11$
Example where this comes up

- 1955 map of rail networks from the Soviet Union to Eastern Europe.
 - Declassified in 1999.
 - 44 edges, 105 vertices

- The US wanted to cut off routes from suppliers in Russia to Eastern Europe as efficiently as possible.

- In 1955, Ford and Fulkerson gave an algorithm which finds the optimal s-t cut.
Flows

- In addition to a capacity, each edge has a flow.
 - (unmarked edges in the picture have flow 0)
- The flow on an edge must be at most its capacity.
- At each vertex, the incoming flows must equal the outgoing flows.

NOTE! There was a typo here on the original slide, it used to say “less than”
Flows

• The value of a flow is:
 • The amount of stuff coming out of s
 • The amount of stuff flowing into t
 • These are the same!

Because of conservation of flows at vertices, stuff you put in = stuff you take out.

The value of this flow is 4.
A maximum flow is a flow of maximum value.

- This example flow is pretty wasteful, I’m not utilizing the capacities very well.

The value of this flow is 4.
A maximum flow is a flow of maximum value.

- This one is maximum; it has value 11.
Example where this comes up

- 1955 map of rail networks from the Soviet Union to Eastern Europe.
 - Declassified in 1999.
 - 44 edges, 105 vertices

- The Soviet Union wants to route supplies from suppliers in Russia to Eastern Europe as efficiently as possible.

These numbers are capacities.

These numbers are flows.

Schriver 2002
A maximum flow is a flow of maximum value.

• This one is maximal; it has value 11.
Pre-lecture exercise

• Each edge is a (directed) rickety bridge.
• How many bridges need to fall down to disconnect s from t? For this graph, 2
• If only one person can be on a bridge at a time, and you want to keep traffic moving (aka, no waiting at vertices allowed), how many people can get to t at a time? Also 2!
Pre-lecture exercise

• Each edge is a (directed) rickety bridge.

• How many bridges need to fall down to disconnect s from t? For this graph, 2

• If only one person can be on a bridge at a time, and you want to keep traffic moving (aka, no waiting at vertices allowed), how many people can get to t at a time? Also 2!

![Diagram of a graph with nodes and edges](image)
How about now?

• Each edge is a (directed) rickety bridge.

• How many bridges need to fall down to disconnect s from t?
 For this graph, 3

• If only one person can be on a bridge at a time, and you want to keep traffic moving (aka, no waiting at vertices allowed), how many people can get to t at a time?
 Also 3!
How about now?

• Each edge is a (directed) rickety bridge.

• How many bridges need to fall down to disconnect s from t?
 For this graph, 3

• If only one person can be on a bridge at a time, and you want to keep traffic moving (aka, no waiting at vertices allowed), how many people can get to t at a time?
 Also 3!
Pre-lecture exercise

• Can you come up with a graph where the two numbers are different?
The value of a max flow from s to t is equal to the cost of a min s-t cut.

Intuition: in a max flow, the min cut better fill up, and this is the bottleneck.
Theorem

Max-flow min-cut theorem

The value of a max flow from s to t is equal to the cost of a min s-t cut.

Intuition: in a max flow, the min cut better fill up, and this is the bottleneck.
Useful corollary

• Suppose that you can find:
 • An s-t cut of cost X
 • An s-t flow with value X

• Then the minimum s-t cut and the maximum s-t flow must both be equal to X.

\[
X \geq \text{Min cut cost} = \text{Max flow value} \geq X
\]

⇒ All of these things must be equal!
We will skip the proof of Min-Cut Max-Flow Theorem

• You don’t need to know the proof of the Min-Cut Max-Flow theorem for this course.
• Instead, we will focus on how to find max flows and min cuts, and applications.

Check out the proof in CLRS if you are curious!
Ford-Fulkerson Algorithm
Ford-Fulkerson algorithm

• Outline of algorithm:
 • We will be updating a flow f
 • Start with $f = 0$
 • We will maintain a “residual graph” G_f
 • A path from s to t in G_f will give us a way to improve our flow.
 • We will continue until there are no s-t paths left in G_f.

Assume for today that we don’t have edges like this, although this assumption can be removed.
Tool: Residual networks
Say we have a flow

Create a new **residual network** from this flow:

- Call the flow f
- Call the graph G
- Call this graph G_f
Tool: Residual networks

Say we have a flow

Create a new residual network from this flow:

Forward edges are the amount that’s left.
Backwards edges are the amount that’s been used.
Residual networks tell us how to improve the flow.

- **Definition**: A path from \(s \) to \(t \) in the residual network is called an **augmenting path**.

- **Claim**: If there is an augmenting path in \(G_f \), we can increase the flow along that path in \(G \).
claim:
if there is an augmenting path, we can increase the flow along that path.

• Easy case: every edge on the path in G_f is a forward edge in G

• Forward edges indicate how much stuff can still go through.
• Just increase the flow on all the edges!
claim:
if there is an augmenting path, we can increase the flow along that path.

• Easy case: every edge on the path in G_f is a forward edge in G

• Forward edges indicate how much stuff can still go through.
• Just increase the flow on all the edges!
claim:
if there is an augmenting path, we can increase the flow along that path.

• Easy case: every edge on the path in G_f is a forward edge in G

• Forward edges indicate how much stuff can still go through.
• Just increase the flow on all the edges!

Call the flow f
Call the graph G

Call this graph G_f

Then update the residual graph.
claim: if there is an augmenting path, we can increase the flow along that path.

• Easy case: every edge on the path in G_f is a **forward edge** in G.

• Forward edges indicate how much stuff can still go through.
• Just increase the flow on all the edges!

Call the flow f
Call the graph G

Call this graph G_f

Then update the residual graph.
claim:
if there is an augmenting path, we can increase the flow along that path.

• Harder case: there are **backward edges** in G in the path.
 • Here’s a slightly different example of a flow:

![Diagram](image-url)

Call the flow \(f \)
Call the graph \(G \)

I changed some of the weights and edge directions.
claim:
if there is an augmenting path, we can increase the flow along that path.

• Harder case: there are **backward edges** in G in the path.
 • Here’s a slightly different example of a flow:

Now we should **NOT** increase the flow at all the edges along the path!
 • For example, that will mess up the conservation of stuff at this vertex.
claim: if there is an augmenting path, we can increase the flow along that path.

• In this case we do something a bit different:
Call the flow f

Call the graph G

Claim: if there is an augmenting path, we can increase the flow along that path.

- In this case we do something a bit different:

Then we’ll update the residual graph:

Call this graph G_f
claim:
if there is an augmenting path, we can increase the flow along that path.

- In this case we do something a bit different:

 Then we’ll update the residual graph:
Before:

Call the flow f
Call the graph G

2 in, 2 out
flow value is 2

After:

Call the flow f
Call the graph G

2 in, 2 out
flow value is 3

Still a legit flow, but with a bigger value!
claim: if there is an augmenting path, we can increase the flow along that path.

proof:

• increaseFlow(path P in \(G_f \), flow \(f \)):
 • \(x = \min \) weight on any edge in P
 • for (u,v) in P:
 • if (u,v) in E, \(f'(u,v) \leftarrow f(u,v) + x \).
 • if (v,u) in E, \(f'(v,u) \leftarrow f(v,u) - x \)
 • return \(f' \)

Check that this always makes a bigger (and legit) flow!
Ford-Fulkerson Algorithm

• **Ford-Fulkerson**\((G) \):
 • \(f \leftarrow \) all zero flow.
 • \(G_f \leftarrow G \)
 • **while** \(t \) is reachable from \(s \) in \(G_f \)
 • Find a path \(P \) from \(s \) to \(t \) in \(G_f \) \hspace{1cm} // \text{eg, use BFS}
 • \(f \leftarrow \text{increaseFlow}(P,f) \)
 • update \(G_f \)
 • **return** \(f \)
Example of Ford-Fulkerson

Notice that we’re going back along one of the backwards edges we added.

We will remove flow from this edge.
Example of Ford-Fulkerson

Notice that we’re going back along one of the backwards edges we added.

We will remove flow from this edge.
Example of Ford-Fulkerson

We will remove flow from this edge AGAIN.
Example of Ford-Fulkerson

We will remove flow from this edge AGAIN.
Example of Ford-Fulkerson

Now we have nothing left to do!
Claim: This is the maximum flow.
Example of Ford-Fulkerson

Now we have nothing left to do! Claim: This is the maximum flow.

There’s no path from s to t, and here’s the cut to prove it.
Example of Ford-Fulkerson

Now we have nothing left to do!
Claim: This is the maximum flow.

There’s no path from s to t, and here’s the cut to prove it.
Example of Ford-Fulkerson

Now we have nothing left to do!

Claim: This is the maximum flow.

Why is this a max flow?

Use Corollary from earlier!

Handwaving

There’s no path from s to t, and here’s the cut to prove it.
What have we learned?

• Max s-t flow is equal to min s-t cut!
 • The USSR and the USA were trying to solve the same problem...

• Useful corollary:
 • To certify that you have a max flow, it’s enough to find a cut with the same cost.
 • To certify that you have a min cut, it’s enough to find a flow with the same value.

• The Ford-Fulkerson algorithm can find the min-cut/max-flow.
 • Repeatedly improve your flow along an augmenting path.
Our usual questions about Ford-Fulkerson

• Does it work?
 • Yep, just showed that

• Is it fast?
 • Depends on how we pick the augmenting paths!
Why should we be concerned?

Suppose we just picked paths arbitrarily.

Choose a really big number C.
Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really big number C.
Why should we be concerned?

Suppose we just picked paths arbitrarily.

Choose a really big number C.

The edge (b,a) disappeared from the residual graph!
Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really big number C.
Why should we be concerned?
Suppose we just picked paths arbitrarily.

The edge \((b,a)\) re-appeared in the residual graph!

Choose a really big number \(C\).
Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really big number C.
Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really big number C.

The edge (b,a) disappeared from the residual graph!
Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really big number C.

This will go on for C steps, adding flow along (b,a) and then subtracting it again.

The edge (b,a) disappeared from the residual graph!
Edmonds-Karp Algorithm

• If we run the Ford-Fulkerson algorithm, using BFS to pick augmenting paths, it’s called the Edmonds-Karp Algorithm.

• It turns out that this will run in time $O(nm^2)$
 • You are not responsible for the proof of this fact.
 • (But you should know the statement of it 😊).
Our usual questions about Ford-Fulkerson

• Does it work?
 • Yep, just showed that

• Is it fast?
 • Depends on how we pick the augmenting paths!
 • If we use BFS to find augmenting paths, then running time is $O(nm^2)$ on a graph with n vertices and m edges.
One more useful observation

• If all the capacities are integers, then the flows in any max flow are also all integers.
 • When we update flows in Ford-Fulkerson, we’re only ever adding or subtracting integers.
 • Since we started with 0 (an integer), everything stays an integer.
But wait, there’s more!

• Min-cut and max-flow are not just useful for the USA and the USSR in 1955.

• The Ford-Fulkerson algorithm is the basis for many other graph algorithms.

• For the rest of today, we’ll see a few:
 • Maximum bipartite matching
 • Integer assignment problems

For more on applications, check out this book chapter from “Algorithms” by Jeff Erickson: https://jeffe.cs.illinois.edu/teaching/algorithms/book/11-maxflowapps.pdf
Applications!
Maximum matching in bipartite graphs

- Different students only want certain items of Stanford swag (depending on fit, style, etc).

- How can we make as many students as possible happy?
Maximum matching in bipartite graphs

• Different students only want certain items of Stanford swag (depending on fit, style, etc).

• How can we make as many students as possible happy?
Solution via max flow

All edges have capacity 1.
Solution via max flow

All edges have capacity 1.
Solution via max flow
why does this work?

1. Because the capacities are all integers, so are the flows – so they are either 0 or 1.

2. Stuff in = stuff out means that the number of items assigned to each student 0 or 1. (And vice versa).

3. Thus, the edges with flow on them form a matching. (And, any matching gives a flow).

4. The value of the flow is the size of the matching.

5. We conclude that the max flow corresponds to a max matching.

All edges have capacity 1.

Value of this flow is 4.
A slightly more complicated example: assignment problems

• One set X
 • Example: Stanford students
• Another set Y
 • Example: tubs of ice cream
• Each x in X can participate in c(x) matches.
 • Student x can only eat 4 scoops of ice cream.
• Each y in Y can only participate in c(y) matches.
 • Tub of ice cream y only has 10 scoops in it.
• Each pair (x,y) can only be matched c(x,y) times.
 • Student x only wants 3 scoops of flavor y
 • Student x’ doesn’t want any scoops of flavor y’

• Goal: assign as many matches as possible.
Example

How can we serve as much ice cream as possible?

This person wants 4 scoops of ice cream, at most 1 of chocolate and at most 3 coffee.

This person is vegan and not that hungry; they only want two scoops of the sorbet.

Stanford Students

Tubs of ice cream
Solution via max flow

Stanford Students → Tubs of ice cream

Stanford Students to Tubs of ice cream flows:
- 4
- 3
- 3
- 1
- 1
- 5
- 2
- 2
- 2
- 10
- 10
- 6
- 3
- 3
- 10
- 6

Tubs of ice cream to Stanford Students flows:
- 6
- 3
- 10
- 3
- 6
Stanford Students: Give this person 1 scoop of this ice cream.

Tubs of ice cream: Solution via max flow

Stanford Students: 1

Tubs of ice cream: 1

Give this person 1 scoop of this ice cream.
Solution via max flow

As before, flows correspond to assignments, and max flows correspond to max assignments.

This student can have flow at most 10 going in, and so at most 10 going out, so at most 10 scoops assigned.

We dish out 17 scoops of ice cream.

No more than 3 scoops of sorbet can be assigned.

No more than 10 scoops of Cherry Garcia can be assigned to this student.
What have we learned?

• Max flows and min cuts aren’t just for railway routing.
 • Immediately, they apply to other sorts of routing too!
 • But also they are useful for assigning items to Stanford students!
Recap

• Today we talked about s-t cuts and s-t flows.

• The **Min-Cut Max-Flow Theorem** says that minimizing the cost of cuts is the same as maximizing the value of flows.

• The Ford-Fulkerson algorithm does this!
 • Find an augmenting path
 • Increase the flow along that path
 • Repeat until you can’t find any more paths and then you’re done!

• An important algorithmic primitive!
 • eg, assignment problems.
Next time

• EthiCS!
• Come with questions!