In this pre-lecture exercise, we will remember a little bit of probability!

1. Let X be a random variable which is 1 with probability $1/100$ and 0 with probability $99/100$.

 (a) What is the expected value $E[X]$?

 (b) Suppose you draw n independent random variables, X_1, X_2, \ldots, X_n, distributed like X. What is the expected value $E[\sum_{i=1}^n X_i]$?

 (c) Suppose I draw independent random variables X_1, X_2, \ldots and I stop when I see the first “1”. For example, if I draw

 \[X_1 = 0, X_2 = 0, X_3 = 0, X_4 = 1 \]

 then I would stop at X_4. Let N be the last index that we draw. (So in the previous example, $N = 4$). How big do you expect N to be?

 \[\text{Note: actually figuring out } E[N] \text{ from scratch is a bit tricky, although you may have seen it in CS109. But even if you don’t do it rigorously, intuitively how big do you expect } N \text{ to be?} \]

2. Consider the following pseudocode, which is an in-place sorting algorithm for an array A.

   ```python
   def bogosort(A):
       while A is not sorted:
           A.shuffle() # this randomly permutes A
       return A
   ```

 (a) Let X_i be a random variable which is 1 if $A.shuffle()$ is sorted after the i'th call, and 0 otherwise.

 (b) What is $E[X_i]$?

 (c) What is the expected number of times that `bogosort` executes the `while` loop?