Lecture 6

Sorting lower bounds and O(n)-time sorting
Announcements

• More HW parties YAY!
 • Adding a Monday evening HW party (in addition to Thursdays).
 • By default, Mondays 7:30 pm-10:30pm, STLC 114.
 • Check out the Piazza post for details.

• “Please please please properly tag all your pages on Gradescope!” --The CAs
 • There is a Piazza post about how to do this.

• Please send OAE letters ASAP (to the staff list)
Stanford
Mental Health and Wellness Week 2020

• We all go through ups and downs.
• Take care of yourself.
Some resources

Campus Resources Academic Advising
http://undergrad.stanford.edu/academic-advising-stanford

Academic Skills Coaching
http://academicskills.stanford.edu

Confidential Support Team
419 Lagunita Drive
650-736-6933 (M–F, 8:30 AM – 5 PM)
650-725-9955 (24/7)
https://vaden.stanford.edu/get-help-now/confidential-support-team

Counseling and Psychological Services (CAPS)
866 Campus Drive, 2nd Floor
650-723-3785
https://caps.stanford.edu

Office of Accessible Education (OAE)
563 Salvatierra Walk
650-723-1066
http://oae.stanford.edu

Residence Deans (RDs)
650-504-8022 (24/7 Dean On Call)
http://resed.stanford.edu/student-support

The Bridge Peer Counseling Center
581 Capistrano Way
650-723-3392
https://thebridge.stanford.edu

Vaden Health Center
866 Campus Drive
650-498-2336
https://vaden.stanford.edu

Wellness Resources at Stanford
https://undergrad.stanford.edu/academic-planning/cardinal-compass/student-handbook/wellness

National Suicide Prevention Hotline
1-800-273-8255 (24h a day)

Mental Health & Wellness Week 2020

WE CONTINUE suicide prevention empowerment
Sorting

- We’ve seen a few $O(n \log(n))$-time algorithms.
 - MERGESORT has worst-case running time $O(n\log(n))$
 - QUICKSORT has expected running time $O(n\log(n))$

Can we do better?

Depends on who you ask...
An O(1)-time algorithm for sorting: StickSort

• Problem: sort these n sticks by length.

• Algorithm:
 - Drop them on a table.

• Now they are sorted this way.
That may have been unsatisfying

• But StickSort does raise some important questions:
 • What is our model of computation?
 • Input: array
 • Output: sorted array
 • Operations allowed: comparisons

 -vs-

 • Input: sticks
 • Output: sorted sticks in vertical order
 • Operations allowed: dropping on tables

• What are reasonable models of computation?
Today: two (more) models

- Comparison-based sorting model
 - This includes MergeSort, QuickSort, InsertionSort
 - We’ll see that any algorithm in this model must take at least $\Omega(n \log(n))$ steps.

- Another model (more reasonable than the stick model...)
 - CountingSort and RadixSort
 - Both run in time $O(n)$
Comparison-based sorting

NO.

CAN'T BEAT NLOG(N)
Comparison-based sorting algorithms

• You want to sort an array of items.
• You can’t access the items’ values directly: you can only compare two items and find out which is bigger or smaller.
Comparison-based sorting algorithms

There is a genie who knows what the right order is. The genie can answer YES/NO questions of the form: is [this] bigger than [that]?

Want to sort these items. There’s some ordering on them, but we don’t know what it is.

Is bigger than ?

The algorithm’s job is to output a correctly sorted list of all the objects.

There is a genie who knows what the right order is.

The genie can answer YES/NO questions of the form: is [this] bigger than [that]?
All the sorting algorithms we have seen work like this.

eg, **QuickSort**:

```
7 6 3 5 1 4 2  
```

- Is 7 bigger than 5? **YES**
- Is 6 bigger than 5? **YES**
- Is 3 bigger than 5? **NO**

Pivot!

etc.
Lower bound of $\Omega(n \log(n))$.

• Theorem:
 • Any deterministic comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps.
 • Any randomized comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps in expectation.

• How might we prove this?
 1. Consider all comparison-based algorithms, one-by-one, and analyze them.
 2. Don’t do that. Instead, argue that all comparison-based sorting algorithms give rise to a decision tree. Then analyze decision trees.

This covers all the sorting algorithms we know!!!
Decision trees

Sort these three things.

- Coffee
- Fire truck
- Happy face

Decision tree:

1. Is the coffee hot? (Coffee ≤ Happy face)
 - Yes: Go to the next decision.
 - No: Go to the next decision.

2. Is the fire truck a priority? (Coffee ≤ Fire truck)
 - Yes: Fire truck is the priority.
 - No: Go to the next decision.

3. Is the coffee more important than the fire truck? (Coffee ≤ Happy face)
 - Yes: Coffee is more important.
 - No: Fire truck is more important.

etc...
Decision trees

- Internal nodes correspond to yes/no questions.
- Each internal node has two children, one for “yes” and one for “no.”
- Leaf nodes correspond to outputs.
 - In this case, all possible orderings of the items.
- Running an algorithm on a particular input corresponds to a particular path through the tree.
Comparison-based algorithms look like decision trees.

Example: Sort these three things using QuickSort.

\[
\text{\textbf{L}} \quad \text{\textbf{R}} \\
\text{\textbf{L}} \quad \text{\textbf{R}} \\
\text{\textbf{L}} \quad \text{\textbf{R}}
\]

Then we’re done (after some base-case stuff)

In either case, we’re done (after some base case stuff and returning recursive calls).

Now recurse on R

Pivot!
Q: What’s the runtime on a particular input?

A: At least the length of the path from the root to the corresponding leaf.

If we take this path through the tree, the runtime is $\Omega(\text{length of the path})$.
Q: What’s the worst-case runtime?

A: At least $\Omega(\text{length of the longest path})$.
How long is the longest path?

We want a statement: in all such trees, the longest path is at least _____

- This is a binary tree with at least _____ leaves.

- The shallowest tree with n! leaves is the completely balanced one, which has depth _____.

- So in all such trees, the longest path is at least log(n!).

- n! is about (n/e)^n (Stirling’s approx.*).
- log(n!) is about n log(n/e) = Ω(n log(n)).

Conclusion: the longest path has length at least Ω(n log(n)).

*Stirling’s approximation is a bit more complicated than this, but this is good enough for the asymptotic result we want.
Lower bound of $\Omega(n \log(n))$.

Theorem:
- Any deterministic comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps.

Proof recap:
- Any deterministic comparison-based algorithm can be represented as a decision tree with $n!$ leaves.
- The worst-case running time is at least the depth of the decision tree.
- All decision trees with $n!$ leaves have depth $\Omega(n \log(n))$.
- So any comparison-based sorting algorithm must have worst-case running time at least $\Omega(n \log(n))$.
Aside:
What about randomized algorithms?

• For example, QuickSort?

• Theorem:
 • Any randomized comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps in expectation.

• Proof:
 • (same ideas as deterministic case)
 • (you are not responsible for this proof in this class)

\end{Aside}
So that’s bad news

• Theorem:
 • Any deterministic comparison-based sorting algorithm must take \(\Omega(n \log(n)) \) steps.

• Theorem:
 • Any randomized comparison-based sorting algorithm must take \(\Omega(n \log(n)) \) steps in expectation.
On the bright side, MergeSort is optimal!

- This is one of the cool things about lower bounds like this: we know when we can declare victory!
But what about StickSort?

• StickSort can’t be implemented as a comparison-based sorting algorithm. So these lower bounds don’t apply.
• But StickSort was kind of silly.

Can we do better?

• Is there be another model of computation that’s less silly than the StickSort model, in which we can sort faster than nlog(n)?

Especially if I have to spend time cutting all those sticks to be the right size!
Beyond comparison-based sorting algorithms

YES!

WE CAN DO WAY BETTER!
Another model of computation

- The items you are sorting have *meaningful values*.

9 6 3 5 2 1 2

instead of

😊 🐼 🐢 🚒 🍫 🍕 🏈
Pre-lecture exercise

• How long does it take to sort n people by their month of birth?

• [discussion]
Another model of computation

• The items you are sorting have **meaningful values.**

```
9 6 3 5 2 1 2
```

instead of

```
😊 😆 🐼 🐢 🚒 ☕️ 🍕 ⚾️
```
Why might this help?

CountingSort:

9 6 3 5 2 1 2

Implement the buckets as linked lists. They are first-in, first-out. This will be useful later.

Sort the buckets!

Concatenate the buckets!

SORTED!
In time $O(n)$.
Assumptions

• Need to be able to know what bucket to put something in.
 • We assume we can evaluate the items directly, not just by comparison
• Need to know what values might show up ahead of time.
• Need to assume there are not too many such values.

| 2 | 12345 | 13 | 2^{1000} | 50 | 100000000 | 1 |
RadixSort

• For sorting integers up to size M
 • or more generally for lexicographically sorting strings

• Can use less space than CountingSort

• Idea: CountingSort on the least-significant digit first, then the next least-significant, and so on.
Step 1: CountingSort on least significant digit

```
   21   345   13   101   50   234   1
```

```
  0      1         2      3      4      5      6      7      8      9
   50   101  21   13      234   345   
```

```
   50   21   101   1   13   234   345
```
Step 2: CountingSort on the 2nd least sig. digit

1 2 3 4 5 6 7 8 9

101 21 101 1 13 234 345

0 1 2 3 4 5 6 7 8 9

101 1 13 21 234 345 50
Step 3: CountingSort on the 3rd least sig. digit

It worked!!
Why does this work?

Original array:

```
21  345  13  101  50  234  1
```

Next array is sorted by the first digit.

```
50  21  101  1  13  234  345
```

Next array is sorted by the first two digits.

```
101  01  13  21  234  345  50
```

Next array is sorted by all three digits.

```
001  013  021  050  101  234  345
```

Sorted array
To prove this is correct...

- What is the inductive hypothesis?

Think-Pair-Share Terrapins
Think: 1 min
Pair + Share: 1 min

Original array:

| 21 | 345 | 13 | 101 | 50 | 234 | 1 |

Next array is sorted by the first digit:

| 50 | 21 | 101 | 1 | 13 | 234 | 345 |

Next array is sorted by the first two digits:

| 101 | 01 | 13 | 21 | 234 | 345 | 50 |

Next array is sorted by all three digits:

| 001 | 013 | 021 | 050 | 101 | 234 | 345 |

Sorted array
RadixSort is correct

• Inductive hypothesis:
 • After the k’th iteration, the array is sorted by the first k least-significant digits.

• Base case:
 • “Sorted by 0 least-significant digits” means not sorted, so the IH holds for k=0.

• Inductive step:
 • TO DO

• Conclusion:
 • The inductive hypothesis holds for all k, so after the last iteration, the array is sorted by all the digits. Hence, it’s sorted!
Inductive step

- Need to show: if IH holds for \(k = i - 1 \), then it holds for \(k = i \).
 - Suppose that after the \(i - 1 \)'st iteration, the array is sorted by the first \(i - 1 \) least-significant digits.
 - Need to show that after the \(i \)'th iteration, the array is sorted by the first \(i \) least-significant digits.

Inductive hypothesis:
After the \(k \)'th iteration, the array is sorted by the first \(k \) least-significant digits.

EXAMPLE: \(i = 2 \)

IH: this array is sorted by first digit.

Want to show: this array is sorted by 1\(^{st}\) and 2\(^{nd}\) digits.
Proof sketch...

proof on next (skipped) slide

Want to show: after the i’th iteration, the array is sorted by the first i least-significant digits.

• Let $x = [x_d x_{d-1} ... x_2 x_1]$ and $y = [y_d y_{d-1} ... y_2 y_1]$ be any x, y.

• Suppose $[x_i x_{i-1} ... x_2 x_1] < [y_i y_{i-1} ... y_2 y_1]$.

• Want to show that x appears before y at end of i’th iteration.

• CASE 1: $x_i < y_i$
 • x is in an earlier bucket than y.

Aka, we want to show that for any x and y so that x belongs before y, we put x before y.

IH: this array is sorted by first digit.

EXAMPLE: $i=2$

Want to show: this array is sorted by 1st and 2nd digits.
Proof sketch... proof on next (skipped) slide

- Let $x=[x_d x_{d-1} \ldots x_2 x_1]$ and $y=[y_d y_{d-1} \ldots y_2 y_1]$ be any x,y.
- Suppose $[x_i x_{i-1} \ldots x_2 x_1] < [y_i y_{i-1} \ldots y_2 y_1]$.
- Want to show that x appears before y at end of i’th iteration.
- **CASE 1:** $x_i < y_i$
 - x is in an earlier bucket than y.
- **CASE 2:** $x_i = y_i$
 - x and y in same bucket, but x was put in the bucket first.

Aka, we want to show that for any x and y so that x belongs before y, we put x before y.

IH: this array is sorted by first digit.

Want to show: after the i’th iteration, the array is sorted by the first i least-significant digits.

Want to show: this array is sorted by 1^{st} and 2^{nd} digits.
Want to show: after the i’th iteration, the array is sorted by the first i least-significant digits.

- Let $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$ be any x,y.
- Suppose $[x_ix_{i-1}...x_2x_1] < [y_iy_{i-1}...y_2y_1]$.
- Want to show that x appears before y at end of i’th iteration.
- **CASE 1: $x_i<y_i$.**
 - x appears in an earlier bucket than y, so x appears before y after the i’th iteration.
- **CASE 2: $x_i=y_i$.**
 - x and y end up in the same bucket.
 - In this case, $[x_{i-1}...x_2x_1] < [y_{i-1}...y_2y_1]$, so by the inductive hypothesis, x appeared before y after $i-1$’st iteration.
 - Then x was placed into the bucket before y was, so it also comes out of the bucket before y does.
 - Recall that the buckets are FIFO queues.
 - So x appears before y in the i’th iteration.
Inductive step

Inductive hypothesis:
After the k’th iteration, the array is sorted by the first k least-significant digits.

• Need to show: if IH holds for k=i-1, then it holds for k=i.
 • Suppose that after the i-1’st iteration, the array is sorted by the first i-1 least-significant digits.
 • Need to show that after the i’th iteration, the array is sorted by the first i least-significant digits.

EXAMPLE: i=2

IH: this array is sorted by first digit.

Want to show: this array is sorted by 1st and 2nd digits.
RadixSort is correct

• **Inductive hypothesis:**
 • After the k’th iteration, the array is sorted by the first k least-significant digits.

• **Base case:**
 • “Sorted by 0 least-significant digits” means not sorted, so the IH holds for $k=0$.

• **Inductive step:**
 • TO DO ✓

• **Conclusion:**
 • The inductive hypothesis holds for all k, so after the last iteration, the array is sorted by all the digits. Hence, it’s sorted!
What is the running time?

- Suppose we are sorting \(n \) \(d \)-digit numbers (in base 10).

 e.g., \(n=7, d=3 \):

 \[
 \begin{array}{cccccccc}
 021 & 345 & 013 & 101 & 050 & 234 & 001 \\
 \end{array}
 \]

 1. How many iterations are there?

 2. How long does each iteration take?

 3. What is the total running time?
What is the running time?

• Suppose we are sorting n d-digit numbers (in base 10).

 e.g., $n=7$, $d=3$:

 | 021 | 345 | 013 | 101 | 050 | 234 | 001 |

1. How many iterations are there?
 • d iterations

2. How long does each iteration take?
 • Time to initialize 10 buckets, plus time to put n numbers in 10 buckets. $O(n)$.

3. What is the total running time?
 • $O(nd)$
This doesn’t seem so great

• To sort n integers, each of which is in \{1,2,...,n\}...

• $d = \lfloor \log_{10}(n) \rfloor + 1$
 • For example:
 • $n = 1234$
 • $\lfloor \log_{10}(1234) \rfloor + 1 = 4$
 • More explanation on next (skipped) slide.

• $Time = O(nd) = O(n \log(n))$.
 • Same as MergeSort!
Aside: why \(d = \lceil \log_{10}(n) \rceil + 1 \)?

- When we write a number \(x = [x_d x_{d-1} \ldots x_1] \) base 10, that means:
 \[
 x = x_1 + x_2 \cdot 10 + \cdots + x_{d-1} \cdot 10^{d-2} + x_d \cdot 10^{d-1}
 \]
 where \(x_i \in \{0,1,\ldots,9\} \)

- Suppose that \(x_d \neq 0 \). Then we have
 - \(x \geq x_d \cdot 10^{d-1} \)
 - \(\log_{10}(x) + 1 - \log_{10}(x_d) \geq d \)
 - \(\log_{10}(x) + 1 > d \)
 - \(\lceil \log_{10}(n) \rceil + 1 \geq d \)

- On the other hand, we also have
 - \(x < (x_d+1) \cdot 10^{d-1} \)
 - \(\log_{10}(x) + 1 - \log_{10}(x_d + 1) < d \)
 - \(\log_{10}(x) < d \)
 - \(\lceil \log_{10}(n) \rceil + 1 \leq d \)
Can we do better?

• RadixSort base 10 doesn’t seem to be such a good idea...
• But what if we change the base? (Let’s say base r)
• We will see there’s a trade-off:
 • Bigger r means more buckets
 • Bigger r means fewer digits
Example: base 100

Original array:

| 21 | 345 | 13 | 101 | 50 | 234 | 1 |
Example: base 100

Original array:

\[
\begin{array}{cccccccc}
0021 & 0345 & 0013 & 0101 & 0050 & 0234 & 0001 \\
\end{array}
\]

100 buckets:

\[
\begin{array}{cccccccc}
00 & 01 & 02 & 34 & 50 & \\
0001 & 0101 & 0234 & 0050 & \\
98 & 99 & \\
\end{array}
\]
Example: base 100

100 buckets:

Sorted!
Example: base 100

Original array

<table>
<thead>
<tr>
<th>0021</th>
<th>0345</th>
<th>0013</th>
<th>0101</th>
<th>0050</th>
<th>0234</th>
<th>0001</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>0101</th>
<th>0001</th>
<th>0013</th>
<th>0021</th>
<th>0234</th>
<th>0345</th>
<th>0050</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>0001</th>
<th>0013</th>
<th>0021</th>
<th>0050</th>
<th>0101</th>
<th>0234</th>
<th>0345</th>
</tr>
</thead>
</table>

Sorted array

Base 100:
• d=2, so only 2 iterations.
• 100 buckets

Base 10:
• d=3, so 3 iterations.
• 10 buckets

Bigger base means more buckets but fewer iterations.
General running time of RadixSort

• Say we want to sort:
 • n integers,
 • maximum size M,
 • in base r.

• Number of iterations of RadixSort:
 • Same as number of digits, base r, of an integer x of max size M.
 • That is \(d = \lceil \log_r(M) \rceil + 1 \)

• Time per iteration:
 • Initialize r buckets, put n items into them
 • \(O(n + r) \) total time.

• Total time:
 • \(O(d \cdot (n + r)) = O((\lceil \log_r(M) \rceil + 1) \cdot (n + r)) \)
Trade-offs

• Given n, M, how should we choose r?
• Looks like there's some sweet spot:

Running time: $O\left(\left(\lceil \log_r(M) \rceil + 1 \right) \cdot (n + r)\right)$
A reasonable choice: $r = n$

- Running time:

$$O\left(\left(\lfloor \log_r(M) \rfloor + 1 \right) \cdot (n + r) \right)$$

Intuition: balance n and r here.

- Choose $n = r$:

$$O\left(n \cdot \left(\lfloor \log_n(M) \rfloor + 1 \right) \right)$$

Choosing $r = n$ is pretty good. What choice of r optimizes the asymptotic running time? What if I also care about space?

Ollie the over-achieving ostrich
Running time of RadixSort with r=n

• To sort n integers of size at most M, time is

\[O(n \cdot (\lceil \log_n(M) \rceil + 1)) \]

• So the running time (in terms of n) depends on how big M is in terms of n:
 • If \(M \leq n^c \) for some constant c, then this is \(O(n) \).
 • If \(M = 2^n \), then this is \(O\left(\frac{n^2}{\log(n)}\right) \)

• The number of buckets needed is \(r=n \).
What have we learned?

• RadixSort can sort n integers of size at most n^{100} in time $O(n)$, and needs enough space to store $O(n)$ integers.

• If your integers have size much much bigger than n (like 2^n), maybe you shouldn’t use RadixSort.

• It matters how we pick the base.

You can put any constant here instead of 100.
Recap

• How difficult sorting is depends on the model of computation.

• How reasonable a model of computation is is up for debate.

• Comparison-based sorting model
 • This includes MergeSort, QuickSort, InsertionSort
 • Any algorithm in this model must use at least $\Omega(n \log(n))$ operations. 😞
 • But it can handle arbitrary comparable objects. 😊

• If we are sorting small integers (or other reasonable data):
 • CountingSort and RadixSort
 • Both run in time $O(n)$ 😊
 • Might take more space and/or be slower if integers get too big 😞
Next time

• Binary search trees!
• Balanced binary search trees!

Before next time

• Pre-lecture exercise for Lecture 7
 • Remember binary search trees?
CHUCK NORRIS QUICKSORTS STICKS
IN TIME O(1)