Lecture 6

Sorting lower bounds on $O(n)$-time sorting
Announcements

• HW2 due Friday

• Please send any OAE letters to Jessica Su (jtysu).
Sorting

• We’ve seen a few $O(n \log(n))$-time algorithms.
 • MERGESORT has worst-case running time $O(n \log(n))$
 • QUICKSORT has expected running time $O(n \log(n))$

Can we do better?

 Depends on who you ask...
An $O(1)$-time algorithm for sorting:

StickSort

- Problem: sort these n sticks by length.

- Algorithm:
 - Drop them on a table.
 - Now they are sorted this way.
That may have been unsatisfying

• But StickSort does raise some important questions:
 • What is our model of computation?
 • Input: array
 • Output: sorted array
 • Operations allowed: comparisons
 -vs-
 • Input: sticks
 • Output: sorted sticks in vertical order
 • Operations allowed: dropping on tables

• What are reasonable models of computation?
Today: two (more) models

• Comparison-based sorting model
 • This includes **MergeSort**, **QuickSort**, **InsertionSort**
 • We’ll see that any algorithm in this model must take at least $\Omega(n \log(n))$ steps.

• Another model (more reasonable than the stick model...)
 • **BucketSort** and **RadixSort**
 • Both run in time $O(n)$
Comparison-based sorting

NO.

CAN'T BEAT NLOG(N)
Comparison-based sorting algorithms

There is a genie who knows what the right order is.

The genie can answer YES/NO questions of the form: is [this] bigger than [that]?

Algorithm

Want to sort these items. There’s some ordering on them, but we don’t know what it is.

The algorithm’s job is to output a correctly sorted list of all the objects.
All the sorting algorithms we have seen work like this.

eg, QuickSort:

\[
\begin{array}{cccccccc}
7 & 6 & 3 & 5 & 1 & 4 & 2 \\
\end{array}
\]

Is 7 bigger than 5? YES
Is 6 bigger than 5? YES
Is 3 bigger than 5? NO

\[
\begin{array}{cccc}
& & & 5 \\
\end{array}
\]

Pivot!

etc.
Lower bound of $\Omega(n \log(n))$.

• Theorem:
 • Any deterministic comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps.
 • Any randomized comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps in expectation.

• How might we prove this?

 1. Consider all comparison-based algorithms, one-by-one, and analyze them.

 2. Don’t do that. Instead, argue that all comparison-based sorting algorithms give rise to a decision tree. Then analyze decision trees.
Decision trees

Sort these three things.

-咖啡 ≤ 😊 ?
 -YES
 -NO

-火車 ≤ 😊 ?
 -YES
 -NO

-咖啡 ≤ 😊 ?
 -YES
 -NO

-咖啡 ≤ 😊 ?
 -YES
 -NO
All comparison-based algorithms look like this

Example: Sort these three things using QuickSort.

etc...

Then we're done (after some base-case stuff)

In either case, we're done (after some base case stuff and returning recursive calls).
All comparison-based algorithms have an associated decision tree.

The leaves of this tree are all possible orderings of the items: when we reach a leaf we return it.

What does the decision tree for MERGESORTING four elements look like?

Running the algorithm on a given input corresponds to taking a particular path through the tree.
What’s the runtime on a particular input?

At least the number of comparisons that are made on that input.

If we take this path through the tree, the runtime is $\Omega(\text{length of the path})$.
What’s the **worst-case** runtime?

At least $\Omega(\text{length of the longest path})$.
How long is the longest path?

We want a statement: in all such trees, the longest path is at least _____

- This is a binary tree with at least _____ leaves.
- The shallowest tree with n! leaves is the completely balanced one, which has depth log(n!).
- So in all such trees, the longest path is at least log(n!).

- n! is about (n/e)^n (Stirling’s formula).
- log(n!) is about n log(n/e) = Ω(n log(n)).

Conclusion: the longest path has length at least Ω(n log(n)).
Lower bound of $\Omega(n \log(n))$.

• Theorem:
 • Any deterministic comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps.

• Proof:
 • Any deterministic comparison-based algorithm can be represented as a decision tree with $n!$ leaves.
 • The worst-case running time is at least the depth of the decision tree.
 • All decision trees with $n!$ leaves have depth $\Omega(n \log(n))$.
 • So any comparison-based sorting algorithm must have worst-case running time at least $\Omega(n \log(n))$.
Aside: What about randomized algorithms?

- For example, QuickSort?
- Theorem:
 - Any randomized comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps in expectation.

- Proof:
 - see lecture notes
 - (same ideas as deterministic case)

\end{Aside}
So, **MergeSort** is optimal!

- This is one of the cool things about **lower bounds** like this: we know when we can declare victory!

But what about **StickSort**?

- **StickSort** can’t be implemented as a comparison-based sorting algorithm. So these lower bounds don’t apply.
- **But StickSort was kind of dumb.**

But might there be another model of computation that’s **less dumb**, in which we can **sort faster**?

Especially if I have to spend time cutting all those sticks to be the right size!
Beyond comparison-based sorting algorithms
Another model of computation

• The items you are sorting have meaningful values.

9 6 3 5 2 1 2

instead of

😊 🐼 🐢 🚒 ☕️ 🍕 🏈
Pre-lecture exercise

• Sorting CS161 students by their month of birth.
 • [Discussion on board]
Another model of computation

• The items you are sorting have meaningful values.

9 6 3 5 2 1 2

instead of

😊 👯 🐢 🚒 ☕ 🍕 🏈
Why might this help?

BucketSort:

Note: this is a simplification of what CLRS calls “BucketSort”

In time $O(n)$.

Implement the buckets as linked lists. They are first-in, first-out. This will be useful later.

Concatenate the buckets!

SORTED!
Issues

• Need to be able to know what bucket to put something in.
 • That’s okay for now: it’s part of the model.
• Need to know what values might show up ahead of time.
One solution: **RadixSort**

- **Idea:** BucketSort on the least-significant digit first, then the next least-significant, and so on.

Step 1: BucketSort on LSB:

```plaintext
21  345  13  101  50  234  1

0  1  2  3  4  5  6  7  8  9

50  21  101  13  234  345  1
```

```plaintext
50  21  101  1  13  234  345
```
Step 2: BucketSort on the 2nd digit
Step 3: BucketSort on the 3rd digit

101 1 13 21 234 345 50

It worked!!
Why does this work?

Original array:

21 345 13 101 50 234 1

Next array is sorted by the first digit.

50 21 101 1 13 234 345

Next array is sorted by the first two digits.

101 01 13 21 234 345 50

Next array is sorted by all three digits.

001 013 021 050 101 234 345

Sorted array
Formally...

• Argument via loop invariant (aka induction).
• Loop Invariant:
Why does this work?

Original array:

| 21 | 345 | 13 | 101 | 50 | 234 | 1 |

Next array is sorted by the first digit.

| 50 | 21 | 101 | 1 | 13 | 234 | 345 |

Next array is sorted by the first two digits.

| 101 | 01 | 13 | 21 | 234 | 345 | 50 |

Next array is sorted by all three digits.

| 001 | 013 | 021 | 050 | 101 | 234 | 345 |

Sorted array
Formally...

• Argument via loop invariant (aka induction).
• Loop Invariant:
 • After the k’th iteration, the array is sorted by the first k least-significant digits.
• Base case:
 • “Sorted by 0 least-significant digits” means not sorted.
• Inductive step:
 • (You fill in...)
• Termination:
 • After the d’th iteration, the array is sorted by the d least-significant digits. Aka, it’s sorted.

Or at least a little formally!

Lucky the lackadaisical lemur

This needs to use: (1) bucket sort works, and (2) we treat each bucket as a FIFO queue.

Plucky the pedantic penguin
What is the running time?

- Say they are \(d \)-digit numbers.
 - There are \(d \) iterations.
 - Each iteration takes time \(O(n + 10) = O(n) \)
- Total time: \(O(nd) \).
- Say the biggest integer is \(M \). What is \(d \)?
 - \(d = \log_{10}(M) \)
 - so \(O(nd) = O(n \log_{10}(M)) \).

Can we do better? what if \(M = n \)?
Trade-offs...

• RadixSort works with any base.
• Before we did it base \(r=10 \).
• But we could do it base \(r=2 \) or \(r=20 \) just as easily.
 • [On board]

• Running time for general \(r \) and \(d \)?
 • [On board]
Trade-offs ctd...

- There are \(n \) numbers, biggest one is \(M \).
- What should we choose for \(r \) (in terms of \(M, n \))?

![Image of a chart showing the effect of base on running time of radixSort (n=100).]

There's some sweet spot...

Running time: \(O(d(n+r)) \)

IPython Notebook for Lecture 6
We get...

- [Discussion on board...]

- If we choose \(r = n \), running time is \(T(n) = O\left(n \log_{n}(M) \right) \)
 - If \(M = O(n) \), \(T(n) = O(n) \)!
 - If \(M = \Omega(n^n) \), \(T(n) = O(n^2) \)...

Choosing \(r = n \) is pretty good. What’s the *optimal* choice of \(r \)?

Ollie the over-achieving ostrich
The story so far

• If we use a comparison-based sorting algorithm, it MUST run in time $\Omega(n\log(n))$.

• If we assume a bit of structure on the values, we have an $O(n)$-time sorting algorithm.

Why would we ever use a comparison-based sorting algorithm??
Why would we ever use a comparison-based sorting algorithm?

- Lots of precision...

<table>
<thead>
<tr>
<th>π</th>
<th>123456 987654</th>
<th>e</th>
<th>140!</th>
<th>2.1234123</th>
<th>n^n</th>
<th>42</th>
</tr>
</thead>
</table>

- We can compare these pretty quickly (*just look at the most-significant digit*):
 - \(\pi = 3.14 \ldots \)
 - \(e = 2.78 \ldots \)
- But to do RadixSort we’d have to look at every digit.
- This is especially problematic since both of these have infinitely many digits...

- RadixSort needs extra memory for the buckets.
 - Not in-place

- I want to sort emoji by talking to a genie.
 - RadixSort makes more assumptions on the input.

Even with integers, if the biggest one is really big, RadixSort is slow.
Recap

• How difficult a problem is depends on the model of computation.

• How reasonable a model of computation is is up for debate.

• Comparison-based sorting model
 • This includes **MergeSort**, **QuickSort**, **InsertionSort**
 • Any algorithm in this model must use at least $\Omega(n \log(n))$ operations.

• But if we are sorting small integers (or other reasonable data):
 • **BucketSort** and **RadixSort**
 • Both run in time $O(n)$
Next time

• Binary search trees!
• Balanced binary search trees!

Before next time

• Pre-lecture exercise for Lecture 7
 • Remember binary search trees?