Lecture 7
Binary Search Trees and Red-Black Trees
Announcements

• I won’t be here on Monday, Greg Valiant will be.
• HW3 will be released on Friday
 • Hope you enjoyed your week off 😊
Roadmap

1st class
Divide and conquer

5 lectures
Asymptotic Analysis
Randomized Algs
Recurrences
Sorting

2 lectures
Data structures

9 lectures
Greedy Algs
Dynamic Programming
Longest, Shortest, Max and Min...

9 lectures
Graphs!

1 lecture
The Future!

More detailed schedule on the website!

We are here
Today

• Begin a brief foray into data structures!
 • See CS 166 for more!

• Binary search trees
 • You may remember these from CS 106B
 • They are better when they’re balanced.

this will lead us to...

• Self-Balancing Binary Search Trees
 • Red-Black trees.
Some data structures for storing objects like [5] (aka, nodes with keys)

• (Sorted) arrays:

```
[1, 2, 3, 4, 5, 7, 8]
```

• (Sorted) linked lists:

```
HEAD -> 1 -> 2 -> 3 -> 4 -> 5 -> 7 -> 8
```

• Some basic operations:
 • INSERT, DELETE, SEARCH
Sorted Arrays

- **O(n) INSERT/DELETE:**

 ![Sorted Array Example](image)

 eg, insert 4.5

- **O(log(n)) SEARCH:**

 ![Sorted Array Example](image)

 eg, Binary search to see if 3 is in A.
Sorted linked lists

• **O(1) INSERT/DELETE:**
 - (assuming we have a pointer to the location of the insert/delete)

[Diagram of a sorted linked list with nodes 1 to 8, with arrows indicating the order and direction of the links.]

• **O(n) SEARCH:**

[Diagram showing the search for 5, with arrows indicating the path taken through the linked list.]

eg, insert 6
eg, search for 5
Motivation for Binary Search Trees

<table>
<thead>
<tr>
<th></th>
<th>Sorted Arrays</th>
<th>Linked Lists</th>
<th>Binary Search Trees*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search</td>
<td>$O(\log(n))$</td>
<td>$O(n)$</td>
<td>$O(\log(n))$</td>
</tr>
<tr>
<td>Insert/Delete</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(\log(n))$</td>
</tr>
</tbody>
</table>

Today!
Binary tree terminology

Each node has two children.

The left child of 3 is 2.

The right child of 3 is 4.

The parent of 3 is 5.

2 is a descendant of 5.

Each node has a pointer to its left child, right child, and parent.

Both children of 1 are NIL. (I won’t usually draw them).

The height of this tree is 3. (Max number of edges from the root to a leaf).

For today all keys are distinct.
Binary Search Trees

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:
From your pre-lecture exercise...

Binary Search Trees

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

```
3  4
8

5
1
2
7
```
From your pre-lecture exercise...

Binary Search Trees

• A BST is a binary tree so that:
 • Every LEFT descendant of a node has key less than that node.
 • Every RIGHT descendant of a node has key larger than that node.
• Example of building a binary search tree:
Binary Search Trees

• A BST is a binary tree so that:
 • Every LEFT descendant of a node has key less than that node.
 • Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

From your pre-lecture exercise...
Binary Search Trees

• A BST is a binary tree so that:
 • Every LEFT descendant of a node has key less than that node.
 • Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

Q: Is this the only binary search tree I could possibly build with these values?

A: No. I made choices about which nodes to choose when. Any choices would have been fine.
Aside: this should look familiar

kinda like QuickSort
Binary Search Trees

• A BST is a binary tree so that:
 • Every LEFT descendant of a node has key less than that node.
 • Every RIGHT descendant of a node has key larger than that node.

Which of these is a BST?

Binary Search Tree

NOT a Binary Search Tree
Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
 • if x!= NIL:
 • inOrderTraversal(x.left)
 • print(x.key)
 • inOrderTraversal(x.right)
Aside: In-Order Traversal of BSTs

- Output all the elements in sorted order!

- `inOrderTraversal(x):
 - if x!= NIL:
 - `inOrderTraversal(x.left)`
 - `print(x.key)`
 - `inOrderTraversal(x.right)`
Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
 • if x!= NIL:
 • inOrderTraversal(x.left)
 • print(x.key)
 • inOrderTraversal(x.right)
Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• `inOrderTraversal(x)`:
 • `if x != NIL`:
 • `inOrderTraversal(x.left)`
 • `print(x.key)`
 • `inOrderTraversal(x.right)`
Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
 • if x!= NIL:
 • inOrderTraversal(x.left)
 • print(x.key)
 • inOrderTraversal(x.right)
Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
 • if x!= NIL:
 • inOrderTraversal(x.left)
 • print(x.key)
 • inOrderTraversal(x.right)
Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
 • if x!= NIL:
 • inOrderTraversal(x.left)
 • print(x.key)
 • inOrderTraversal(x.right)
Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
 • if x!= NIL:
 • inOrderTraversal(x.left)
 • print(x.key)
 • inOrderTraversal(x.right)
Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
 • if x!= NIL:
 • inOrderTraversal(x.left)
 • print(x.key)
 • inOrderTraversal(x.right)
Back to the goal

Fast SEARCH/INSERT/DELETE

Can we do these?
SEARCH in a Binary Search Tree

definition by example

EXAMPLE: Search for 4.

EXAMPLE: Search for 4.5
- It turns out it will be convenient to return 4 in this case
- (that is, return the last node before we went off the tree)

How long does this take?
O(length of longest path) = O(height)

Write pseudocode (or actual code) to implement this!
EXAMPLE: Insert 4.5

- **INSERT**(key):
 - $x = \text{SEARCH}(\text{key})$
 - Insert a new node with desired key at x...

You thought about this on your pre-lecture exercise! (See skipped slide for pseudocode.)
EXAMPLE: Insert 4.5

- **INSERT**(key):
 - x = **SEARCH**(key)
 - if key > x.key:
 - Make a new node with the correct key, and put it as the right child of x.
 - if key < x.key:
 - Make a new node with the correct key, and put it as the left child of x.
 - if x.key == key:
 - return
DELETE in a Binary Search Tree

EXAMPLE: Delete 2

- DELETE(key):
 - x = SEARCH(key)
 - if x.key == key:
 -delete x....

You thought about this in your pre-lecture exercise too!

This is a bit more complicated...see the skipped slides for some pictures of the different cases.
DELETE in a Binary Search Tree
several cases (by example)
say we want to delete 3

Case 1: if 3 is a leaf, just delete it.

Case 2: if 3 has just one child, move that up.

Write pseudocode for all of these!
DELETE in a Binary Search Tree ctd.

Case 3: if 3 has two children, replace 3 with its **immediate successor.** (aka, next biggest thing after 3)

- Does this maintain the BST property?
 - Yes.
- How do we find the immediate successor?
 - SEARCH for 3 in the subtree under 3.right
- How do we remove it when we find it?
 - If [3.1] has 0 or 1 children, do one of the previous cases.
 - What if [3.1] has two children?
 - It doesn’t.
How long do these operations take?

- **SEARCH** is the big one.
 - Everything else just calls **SEARCH** and then does some small \(O(1)\)-time operation.

Time = \(O(\text{height of tree})\)

Trees have depth \(O(\log(n))\). **Done!**

How long does search take?

Wait a second...

Lucky the lackadaisical lemur.

Plucky the Pedantic Penguin
Search might take time $O(n)$.

- This is a valid binary search tree.
- The version with n nodes has depth n, **not** $O(\log(n))$.
What to do?

• Goal: Fast **SEARCH**/**INSERT**/**DELETE**
• All these things take time $O(\text{height})$
• And the height might be big!!! 😞

• Idea 0:
 • Keep track of how deep the tree is getting.
 • If it gets too tall, re-do everything from scratch.
 • At least $\Omega(n)$ every so often....

• Turns out that’s not a great idea. Instead we turn to...
Self-Balancing Binary Search Trees
Idea 1: Rotations

- Maintain Binary Search Tree (BST) property, while moving stuff around.

\[\text{YOINK!} \]

\[\text{THAT'S NOT BINARY!!} \]

\[\text{CLAIM: this still has BST property.} \]

No matter what lives underneath A,B,C, this takes time $O(1)$. (Why?)

Note: A, B, C, X, Y are variable names, not the contents of the nodes.
This seems helpful

YOINK!
Does this work?

- Whenever something seems unbalanced, do rotations until it’s okay again.

Even for Lucky this is pretty vague. What do we mean by “seems unbalanced”? What’s “okay”?

Lucky the Lackadaisical Lemur
Idea 2: have some proxy for balance

• Maintaining **perfect balance** is too hard.
• Instead, come up with some **proxy for balance**:
 • If the tree satisfies [SOME PROPERTY], then it’s pretty balanced.
 • We can maintain [SOME PROPERTY] using rotations.

There are actually several ways to do this, but today we’ll see...
Red-Black Trees

• A Binary Search Tree that balances itself!
• No more time-consuming by-hand balancing!
• Be the envy of your friends and neighbors with the time-saving...

Red-Black tree!

Maintain balance by stipulating that black nodes are balanced, and that there aren't too many red nodes.

It's just good sense!
Red-Black Trees
these rules are the proxy for balance

• Every node is colored **red** or **black**.
• The root node is a **black node**.
• NIL children count as **black nodes**.
• Children of a **red node** are **black nodes**.
• For all nodes x:
 • all paths from x to NIL’s have the same number of **black nodes** on them.

I’m not going to draw the NIL children in the future, but they are treated as black nodes.
Examples?

• Every node is colored **red** or **black**.
• The root node is a **black node**.
• NIL children count as **black nodes**.
• Children of a **red node** are **black nodes**.
• For all nodes x:
 • all paths from x to NIL’s have the same number of **black nodes** on them.

Yes! No! No! No!

Which of these are red-black trees?
Why???????

• This is pretty balanced.
 • The **black nodes** are balanced
 • The **red nodes** are “spread out” so they don’t mess things up too much.

• We can maintain this property as we insert/delete nodes, by using rotations.

This is the really clever idea!
This **Red-Black** structure is a proxy for balance.
It’s just a smidge weaker than perfect balance, but we can actually maintain it!
This is “pretty balanced”

• To see why, intuitively, let’s try to build a Red-Black Tree that’s unbalanced.

Conjecture:
the height of a red-black tree with n nodes is at most $2 \log(n)$
The height of a RB-tree with \(n \) non-NIL nodes is at most \(2\log(n + 1) \)

- Define \(b(x) \) to be the number of black nodes in any path from \(x \) to NIL.
 - (excluding \(x \), including NIL).

- Claim:
 - There are at least \(2^{b(x)} - 1 \) non-NIL nodes in the subtree underneath \(x \).
 - (Including \(x \)).
 - [Proof by induction – on board if time]

Then:

\[
\begin{align*}
 n & \geq 2^{b(root)} - 1 \\
 & \geq 2^{\frac{\text{height}}{2}} - 1 \\
\end{align*}
\]

using the Claim

\[
\text{b(root) } \geq \text{ height/2 because of RBTree rules.}
\]

Rearranging:

\[
\begin{align*}
 n + 1 & \geq 2^{\frac{\text{height}}{2}} \\
 \Rightarrow \text{height} & \leq 2\log(n + 1)
\end{align*}
\]
Maintaining our proxy for balance

• We can do SEARCH in an RBTree the same as for general BSTs.

• But what about INSERT/DELETE?
 • We need to do it in a way that maintains the RBTree property.

• For the rest of lecture [if time], we’ll sketch how to do INSERT/DELETE for RBTrees.
 • See CLRS for more details if you are interested.

• You are not responsible for the details of INSERT/DELETE for RBTrees for this class.
 • You should know what the “proxy for balance” property is and why it ensures approximate balance.
 • You should know that this property can be efficiently maintained, but you do not need to know the details of how.
• Suppose we want to insert 0 here.

• There are 3 “important” cases for different colorings of the existing tree, and there are 9 more cases for all of the various symmetries of these 3 cases.
INSERT: Case 1

• Make a new red node.
• Insert it as you would normally.

What if it looks like this?

Example: insert 0
• Suppose we want to insert 0 here.

• There are 3 “important” cases for different colorings of the existing tree, and there are 9 more cases for all of the various symmetries of these 3 cases.
INSERT: Case 2

• Make a new red node.
• Insert it as you would normally.
• Fix things up if needed.

Example: insert 0

No!
INSERT: Case 2

- Make a new **red node**.
- Insert it as you would normally.
- Fix things up if needed.

Example: insert 0

Can’t we just insert 0 as a **black node**?

No!
We need a bit more context

What if it looks like this?

Example: insert 0
We need a bit more context

- Add 0 as a red node.
We need a bit more context

- Add 0 as a red node.
- **Claim:** RB-Tree properties still hold.

Example: insert 0

What if it looks like this?

Flip colors!
But what if that was red?

What if it looks like this?

Example: insert 0
More context...

What if it looks like this?

Example: insert 0
More context...

What if it looks like this?

Example: insert 0

Now we’re basically inserting 6 into some smaller tree. Recurse!

This one!
Example, part I

-3

-4

-2

-1

6

3

7

Want to insert 0 here.
Example, part I
Example, part I

-4
-3
-2
-1

3
6
0
7

Flip colors!
Example, part I

Want to insert 6 here.

Need to know how to insert into trees that look like this...

Want to insert 6 here.
• Suppose we want to insert 0 here.

• There are 3 “important” cases for different colorings of the existing tree, and there are 9 more cases for all of the various symmetries of these 3 cases.
INSERT: Case 3

• Make a new red node.
• Insert it as you would normally.
• Fix things up if needed.

Example: Insert 0.
• Maybe with a subtree below it.
Recall Rotations

• Maintain Binary Search Tree (BST) property, while moving stuff around.

CLAIM: this still has BST property.
Inserting into a Red-Black Tree

- Make a new **red node**.
- Insert it as you would normally.
- Fix things up if needed.

What if it looks like this?

YOINK!

Argue that this is a good thing to do!
Example, part 2

Want to insert 6 here.
Example, part 2

YOINK!

-4
-3
-2
-1
6
3
7
0
Example, part 2 YOINK!
Example, part 2

TA-DA!
Many cases

• Suppose we want to insert 0 here.

• There are 3 “important” cases for different colorings of the existing tree, and there are 9 more cases for all of the various symmetries of these 3 cases.
Deleting from a Red-Black tree

Fun exercise!

Ollie the over-achieving ostrich
That’s a lot of cases!

• You are **not responsible** for the nitty-gritty details of Red-Black Trees. (For this class)
 • Though implementing them is a great exercise!

• You should know:
 • What are the properties of an RB tree?
 • And (more important) why does that guarantee that they are balanced?
What have we learned?

• Red-Black Trees always have height at most $2\log(n+1)$.
• As with general Binary Search Trees, all operations are $O(\text{height})$.
• So all operations with RBTrees are $O(\log(n))$.
Conclusion: The best of both worlds

<table>
<thead>
<tr>
<th></th>
<th>Sorted Arrays</th>
<th>Linked Lists</th>
<th>Balanced Binary Search Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search</td>
<td>O(log(n))</td>
<td>O(n)</td>
<td>O(log(n))</td>
</tr>
<tr>
<td>Insert/Delete</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(log(n))</td>
</tr>
</tbody>
</table>
Today

• Begin a brief foray into data structures!
 • See CS 166 for more!

• Binary search trees
 • You may remember these from CS 106B
 • They are better when they’re balanced.

this will lead us to...

• Self-Balancing Binary Search Trees
 • Red-Black trees.

Recap
Recap

• Balanced binary trees are the best of both worlds!
• But we need to keep them balanced.
• Red-Black Trees do that for us.
 • We get $O(\log(n))$-time INSERT/DELETE/SEARCH
 • Clever idea: have a proxy for balance
Next time

• Hashing!
• I won’t be here, but Greg Valiant will be!

Before next time

• Pre-lecture exercise for Lecture 8
 • (More) fun with probability!