Midterm Review!!!
Exam 1 is on Thursday!!

- 6-9pm!
- Please let us know if you don’t get an email with your exam location by EOD today (Monday).
- See course website (under the HW/Exams tab) for a practice exam, etc.

Special OH! Tuesday May 2, Huang basement, 10am-6:30pm!

- No homework party or Section this week
- No OH on Thursday/Friday, and we’ll also be de-activating Ed temporarily.
Announcements

• Slight deviation from HW schedule:
 • HW4 will be released Wednesday 5/3 as usual.
 • You will have until FRIDAY 5/12 to hand it in! Two-day extension!
 • Up to two late days gives a late deadline of Sunday 5/14.

• A note about grading:
 • Some folks have told us they are concerned about either:
 • The midterm being hard and so everyone will get a bad grade in the class
 • The midterm being easy and then things will get curved down
 • We will not “curve down” in any situation!
 • If the midterm is hard, we will curve up!
It will be okay!!!!

• I don’t think that the exam is easy.
 • This is on purpose: it raises the signal-to-noise ratio and makes grades a better reflection of your knowledge.

• That means it’s okay if you don’t get every question right!
 • Exam tip: if you get stuck, move on and come back to it later.

• Exam philosophy: we have done our best to have:
 • No “trick” questions
 • No tricky “aha” moments needed (except bonus pts) – just understand the concepts/facts/skills well!
Agenda

1. A **recap** about hash tables.
2. A **quick recap** of everything else we’ve seen so far.
3. If time, answering (more) questions!
Recap of Hash Tables
Hash tables

- A hash table:
 - Stores items from a universe U
 - Supports INSERT/DELETE/SEARCH

- A hash table consists of:
 - An array A of n “buckets,” each of which contains a linked list
 - A hash function $h: U \rightarrow \{1, \ldots, n\}$

- INSERT(x):
 - Insert x into $A[h(x)]$

- SEARCH(x):
 - Go through $A[h(x)]$ to look for x

- DELETE(x):
 - Go through $A[h(x)]$ to look for x
 - If you find it, delete it

Time $O(1)$

Time $O(\text{len}(A[h(x)]))$

\starAssuming $h(x)$ takes $O(1)$ time to evaluate.
Question: How do we pick the hash function?

• We saw last week that if an adversary knows the hash function \(h \) ahead of time, we will never do well in a worst-case model.
 • There will be some \(x \) so that \(A[h(x)] \) is very full.

• Instead we choose \(h \) randomly.
 • Uniformly randomly is a bad idea: how will we store the function \(h \)???

• In more detail, we choose randomly from a Universal Hash Family.
Universal Hash Families

- H is a *universal hash family* if, when h is chosen uniformly at random from H,

$$P_{h \in H}\{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$$

In English: When we choose $h \in H$ uniformly at random (out of all functions in H), the probability of any two elements colliding is no larger than what it would be if we chose h uniformly at random (out of all possible functions).
Example

• Choose a prime p so that $|U| \leq p \leq 2|U|$.
• Define $h_{a,b}(x) = ax + b \mod p \mod n$
• H is the set of all such $h_{a,b}$ for $1 \leq a \leq p - 1; 0 \leq b \leq p - 1$.

• To choose h uniformly at random from H, just choose a random a, b.

• *We did not prove in class that this H is a universal hash family, and you are not responsible for that proof.*
So the whole setup is:

- **Initialize**(p): //p is prime, so that $|U| < p$
 - Store p.
 - Choose a random a, b and store them.
 - Def $h(x)$:
 - Return $ax + b \mod p \mod n$
 - Initialize an array A with n buckets.

Space:
- $O(n)$ to store the buckets
- $O(\log |U|)$ per item in U that we INSERT
- $O(\log |U|)$ to store a, b, p
- $\Rightarrow O(n \log |U|)$, assuming we store $O(n)$ items.

- **INSERT**(x):
 - Insert x into $A[h(x)]$

- **SEARCH**(x):
 - Go through $A[h(x)]$ to look for x

- **DELETE**(x):
 - Go through $A[h(x)]$ to look for x
 - If you find it, delete it
So the whole setup is:

- **Initialize**(*p*):
 - *p* is prime, so that \(|U| < p \)
 - Store *p*.
 - Choose a random \(a, b \) and store them.
 - Define \(h(x) \):
 - Return \(ax + b \mod p \mod n \)
 - Initialize an array \(A \) with *n* buckets.

- **INSERT**(*x*):
 - Insert *x* into \(A[h(x)] \)

- **SEARCH**(*x*):
 - Go through \(A[h(x)] \) to look for *x*

- **DELETE**(*x*):
 - Go through \(A[h(x)] \) to look for *x*
 - If you find it, delete it

Time:
- What is \(\text{len}(A[h(x)]) \) after \(\text{INSERTing} \) *n* items?
- Worst-case: \(O(n) \)
- Expected: \(E[\ \text{len}(A[h(x)])] = E[\ \text{number of items that collide with } x] = O(1). \)

Assuming \(h(x) \) takes \(O(1) \) time to evaluate.
The game

1. An adversary chooses any n items $u_1, u_2, \ldots, u_n \in U$, and any sequence of L INSERT/DELETE/SEARCH operations on those items.

2. You, the algorithm, chooses a, b and thus the hash function h.

3. **HASH IT OUT**

 Guarantee: In this model, the expected running time of each operation in the adversary’s list is $O(1)$.
Questions about hash tables?
Real quick recap of everything else!
Lecture 1

• Divide and Conquer!

• Karatsuba integer multiplication: divide-and-conquer algorithm for multiplying n-digit numbers that runs in time $O\left(n^{\log_2 3}\right) = O(n^{1.6})$
Lecture 2: Worst-case analysis

Think of it like a game:

Here is my algorithm!

Algorithm:
- Do the thing
- Do the stuff
- Return the answer

Here is an input! (Which I designed to be terrible for your algorithm!)

Worst-case analysis guarantee: Algorithm should work (and be fast) on that worst-case input.

- **Pros**: very strong guarantee
- **Cons**: very strong guarantee
Lecture 2: Proving that an algorithm is correct

• Often* we use *induction*!

• For a recursive algorithm:
 • Inductive hypothesis is often* “The algorithm is correct on inputs of size up to n”
 • Examples: MergeSort (Lecture 2); DuckTroupeSort (HW1); SELECT (Lecture 4 Handout)

• For an iterative algorithm:
 • Inductive hypothesis is often* “After iteration i, [things are going the way they should be].”
 • Examples: InsertionSort (Lecture 2 Handout); Proof that RadixSort is correct (Lecture 6)

*Not the only way to do it, but this is typically how it goes in this class.
Lecture 2: Asymptotic Notation

• Informally, $T = O(g)$ means that T grows “about the same order of, or slower, than g.”

• Formally, $T = O(g)$ means that there is some $c, n_0 > 0$ so that for all $n \geq n_0$, $T(n) \leq c \cdot g(n)$.

$O(\)$ is an upper bound
$\Omega(\)$ is a lower bound
$\Theta(\)$ is both
Lecture 2: MergeSort!

• Divide-and-conquer
• Runs in (worst-case) time $O(n \log n)$

• Basic idea:
 • Recursively sort left and right halves
 • Merge them!
Lecture 3: The master theorem

• Suppose that $a \geq 1$, $b > 1$, and d are constants (independent of n).
• Suppose $T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d)$. Then

$$T(n) = \begin{cases}
O(n^d \log(n)) & \text{if } a = b^d \\
O(n^d) & \text{if } a < b^d \\
O(n^{\log_b(a)}) & \text{if } a > b^d
\end{cases}$$

Three parameters:
- a : number of subproblems
- b : factor by which input size shrinks
- d : need to do n^d work to create all the subproblems and combine their solutions.

We can also take n/b to mean either $\left\lfloor \frac{n}{b} \right\rfloor$ or $\left\lceil \frac{n}{b} \right\rceil$ and the theorem is still true.
Proof: generalized tree method

• Add up all the work at all the levels of the recursion tree!

<table>
<thead>
<tr>
<th>Level</th>
<th>Size n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(n/b)</td>
</tr>
<tr>
<td>1</td>
<td>(n/b) (n/b) (n/b)</td>
</tr>
<tr>
<td>2</td>
<td>(n/b^2) (n/b^2) (n/b^2)</td>
</tr>
<tr>
<td>(t)</td>
<td>(n/b^t) (n/b^t) (n/b^t)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(\log_b(n))</td>
<td>(Size 1)</td>
</tr>
</tbody>
</table>
Lecture 3: Substitution Method aka “Guess and Check”

- **Step 1**: Generate a guess at the correct answer.
- **Step 2**: Try to prove that your guess is correct.
- **(Step 3: Profit.)**

How to guess?
- “Unrolling” the recurrence relation
- Doing a few examples
- Divine inspiration or meta-analysis
- Hope

How to prove guess is correct?
- Proof by induction!
- IH is (often *): “My guess holds for all values up to n.”

How to profit?
- Write down a nice proof!
- (Take it over to Sand Hill Road?)

Examples!
- One from Lecture 3
- Another from Lecture 3 at the end that we skipped (but check out the slides)
- Lecture 4 (SELECT) analysis. See also Section 6.4.5 in Algorithms Illuminated text.
- HW2, Exercise 3
Lecture 4: k-Select

• Deterministic $O(n)$ time algorithm to find the k^{th} smallest element in an array.

• Algorithm idea:
 • Partition around a pivot, and recursively search on either right or left side.
 • To pick the pivot, recursively find a “median of medians”

What we’ll use as the pivot \approx median of the whole thing \approx Ideal pivot
Aside: Common question on Ed: How did we come up with the recurrence relation for SELECT?

- Let $T(n) =$ running time of SELECT
- What does SELECT do?
 - Find a pivot that gives us at worst a $3n/10 - 7n/10$ split. Time...TBD
 - Partition around the pivot Time $O(n)$
 - Recursively call select on a list of size at most $7n/10$. Time at most $T(7n/10)$

- How do we find the pivot?
 - Break up the list into chunks of size 5
 - Find the median of each of those small lists Time $O(n)$
 - Recursively call SELECT to find the median of the $n/5$ medians Time $T(n/5)$

So $T(n) = T(n/5) + T(7n/10) + O(n)$
Aside: Common question on Ed: How do we solve this recurrence relation?

• Substitution / Guess and check method!
• We guess $O(n)$
 • Wishful thinking, some experiments, the fact that “n” is sitting right there.
• More precisely, we guess $T(n) \leq 10 \, n$
 • By trying to do a proof by induction and playing around to find out what IH works!
• To check our guess, we do proof by induction!
 • Inductive hypothesis: $T(n) \leq 10 \, n$
 • Check out Lecture 4 for the actual proof by induction
 • It’s not any trickier than any other proof by induction, the only tricky part was coming up with the right guess!

$T(n) = T(n/5) + T(7n/10) + O(n)$

Note: it’s mathematically legit to just start off by guessing $T(n) \leq 10000 \, n$. Just not very elegant.
Lecture 5: Randomized Algorithms

Scenario 1: Expected Running time
1. You publish your algorithm.
2. Bad guy picks the input.
3. You run your randomized algorithm.

Scenario 2: Worst-case Running time
1. You publish your algorithm.
2. Bad guy picks the input.
3. Bad guy chooses the randomness (fixes the dice) and runs your algorithm.

- In **Scenario 1**, the running time is a **random variable**.
 - It makes sense to talk about **expected running time**.
 - This still counts as “worst-case analysis” since there’s a bad guy, but it’s not the same as “worst-case running time.”
- In **Scenario 2**, the running time is **not random**.
 - We call this the **worst-case running time** of the randomized algorithm.
Lecture 5: QuickSort

• Runs in expected time $O(n \log n)$, worst-case time $O(n^2)$

• Divide and Conquer!

• Pick a **random** pivot.

• Partition around the pivot, recurse on left and right halves.

• Analysis was a bit tricky!

 • It’s NOT okay to just say “$E[|L|], E[|R|] = \frac{n}{2}$, so in expectation the relevant recurrence relation is $T(n) = 2T\left(\frac{n}{2}\right) + O(n)$”

 • Instead we counted comparisons, and looked at the expected number of those.

 • Key tool: linearity of expectation!
Lecture 6: Comparison-based lower bound

• Comparison-based model:
 • Can only interact with values by comparing items to each other.
 • QuickSort, MergeSort, InsertionSort all follow this model.

• Theorem: Any comparison-based sorting algorithm needs $\Omega(n \log n)$ comparisons.

• Proof idea:
 • Look at the decision tree corresponding to the algorithm.
 • It has at least $n!$ leaves
 • So it has depth at least $\log(n!) = \Omega(n \log n)$.

Sort these three things.

\[\leq \]

\[\geq \]
Lecture 6: CountingSort and RadixSort

• CountingSort idea:
 • If you are sorting integers that are all between, say, 1 and 10, put everything into buckets labeled 1,2,...,10.
 • Then take them out in order.

• RadixSort idea:
 • If you have d-digit numbers (base r), first CountingSort by least-sig-digit, then by next-least-sig-digit, etc.

• RadixSort running time: $O\left(\left(\lceil \log_r(M) \rceil + 1 \right) \cdot (n + r) \right)$
 • Choosing the base r to be equal to n is a good choice.

• RadixSort space: r buckets.
Lecture 7: Binary Search Trees

• A BST is a binary tree so that:
 • Every LEFT descendant of a node has key less than that node.
 • Every RIGHT descendant of a node has key larger than that node.

• Things you can do with a BST:
 • INSERT/SEARCH/DELETE in time $O([\text{height of tree}])$
 • In the worst-case this might be $O(n)$ 😞
 • In-order traversal (print out in sorted order, time $O(n)$)
Lecture 7: Red-Black Trees

- Self-balancing binary search trees.
- INSERT/SEARCH/DELETE in time $O(\log n)$ 😊
- Main idea: RBTree properties are a proxy for balance.
 - You should know what these properties are, but not the details of how to implement INSERT/SEARCH/DELETE.

- Every node is colored red or black.
- The root node is a black node.
- NIL children count as black nodes.
- Children of a red node are black nodes.
- For all nodes x:
 - all paths from x to NIL’s have the same number of black nodes on them.
Lecture 8: Hashing

• We did that already!
So here we are!

• Who has questions?
 • Let’s prioritize conceptual questions now – for questions about specific HW problems, practice exam questions, etc, ask on Ed or in OH!
Next time!

• Graphs!

Before Next time!

• Pre-lecture exercise!