Tree Rotations

Modify the following trees via a sequence of rotations so that 3 is at the root of each tree. Draw out the intermediate stages (result after each rotation step).

(a)
```
      5
     / \
   1    6
  / \  / \  
0   3 2   4
```

(b)
```
      7
     / \
   5   8
```
```
      3
     / \
   2   6
```
```
      2
     / \
  4   1
```
Randomly Built BSTs

In this problem, we prove that the average depth of a node in a randomly built binary search tree with \(n \) nodes is \(O(\log n) \). A randomly built binary search tree with \(n \) nodes is one that arises from inserting the \(n \) keys in random order into an initially empty tree, where each of the \(n! \) permutations of the input keys is equally likely.

Let \(d(x, T) \) be the depth of node \(x \) in a binary tree \(T \) (the depth of the root is 0). Then, the average depth of a node in a binary tree \(T \) with \(n \) nodes is

\[
\frac{1}{n} \sum_{x \in T} d(x, T).
\]

(a) Let the total path length \(P(T) \) of a binary tree \(T \) be defined as the sum of the depths of all nodes in \(T \), so the average depth of a node in \(T \) with \(n \) nodes is equal to \(\frac{1}{n} P(T) \). Show that \(P(T) = P(T_L) + P(T_R) + n - 1 \), where \(T_L \) and \(T_R \) are the left and right subtrees of \(T \), respectively.

(b) Let \(P(n) \) be the expected total path length of a randomly built binary search tree with \(n \) nodes. Show that \(P(n) = \frac{1}{n} \sum_{i=0}^{n-1} (P(i) + P(n - i - 1) + n - 1) \).

(c) Show that \(P(n) = O(n \log n) \). You may cite a result previously proven in the context of other topics covered in class.

(d) Design a sorting algorithm based on randomly building a binary search tree. Show that its (expected) running time is \(O(n \log n) \). Assume that a random permutation of \(n \) keys can be generated in time \(O(n) \)