CS 161 Section 6

CA: [name of CA]
Agenda

1. Dynamic Programming
2. Graphs
 a. Bellman-Ford
 b. Floyd-Warshall
3. Section Problems
Dynamic Programming
What is *dynamic programming*?

- It is an algorithm design paradigm
 - like divide-and-conquer is an algorithm design paradigm.
- Usually it is for solving **optimization problems**
 - eg, *shortest* path, or *longest* common subsequence
 - (Fibonacci numbers aren’t an optimization problem, but they are a good example…)

Bottom up approach
what we just saw.

● For Fibonacci:
 ● Solve the small problems first
 ○ fill in F[0], F[1]
 ● Then bigger problems
 ○ fill in F[2]
 ● …
 ● Then bigger problems
 ○ fill in F[n-1]
 ● Then finally solve the real problem.
 ○ fill in F[n]
Top down approach

- Think of it like a recursive algorithm.
- To solve the big problem:
 - Recurse to solve smaller problems
 - Those recurse to solve smaller problems
 - etc..

- The difference from divide and conquer:
 - **Memo-ization**
 - Keep track of what small problems you've already solved to prevent re-solving the same problem twice.
What have we learned?

● Dynamic programming:
 ○ Paradigm in algorithm design.
 ○ Uses optimal substructure
 ○ Uses overlapping subproblems
 ○ Can be implemented bottom-up or top-down.
 ○ It’s a fancy name for a pretty common-sense idea:

Don’t duplicate work if you don’t have to!
Longest Common Subsequence

● Subsequence:
 ○ BDFH is a subsequence of ABCDEFGH

● If X and Y are sequences, a common subsequence is a sequence which is a subsequence of both.
 ○ BDFH is a common subsequence of ABCDEFGH and of ABDFGH

● A longest common subsequence…
 ○ …is a common subsequence that is longest.
 ○ The longest common subsequence of ABCDEFGH and ABDFGH is ABDFGH.
Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a recursive formulation for the length of the longest common subsequence.
- **Step 3:** Use dynamic programming to find the length of the longest common subsequence.
- **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
Recipe for applying Dynamic Programming

- **Step 1:** Identify *optimal substructure.*
Step 1: Optimal substructure

Prefixes:

<table>
<thead>
<tr>
<th>X</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>A</td>
<td>C</td>
<td>G</td>
<td>C</td>
<td>T</td>
</tr>
</tbody>
</table>

Notation: denote this prefix ACGC by Y_4

- Our sub-problems will be finding LCS’s of prefixes to X and Y.
- Let $C[i,j] = \text{length_of_LCS}(X_i, Y_j)$
Recipe for applying Dynamic Programming

- **Step 1:** Identify optimal substructure.
- **Step 2:** Find a recursive formulation for the length of the longest common subsequence.
Goal

- Write $C[i,j]$ in terms of the solutions to smaller sub-problems

$$C[i,j] = \text{length_of_LCS}(X_i, Y_j)$$
Two cases

Case 1: $X[i] = Y[j]$

- Our sub-problems will be finding LCS’s of prefixes to X and Y.
- Let $C[i,j] = \text{length_of_LCS}(X_i, Y_j)$

Then $C[i,j] = 1 + C[i-1,j-1]$.

- because $\text{LCS}(X_i, Y_j) = \text{LCS}(X_{i-1}, Y_{j-1})$ followed by A
Two cases

Case 2: X[i] \(!=\) Y[j]

- Our sub-problems will be finding LCS’s of prefixes to X and Y.
- Let \(C[i,j] = \text{length_of_LCS}(X_i, Y_j) \)

![Diagram showing two sequences and their comparison](image)

- Then \(C[i,j] = \max\{ C[i-1,j], C[i,j-1] \} \).
 - either \(\text{LCS}(X_i, Y_j) = \text{LCS}(X_{i-1}, Y_j) \) and \(T \) is not involved,
 - or \(\text{LCS}(X_i, Y_j) = \text{LCS}(X_i, Y_{j-1}) \) and \(A \) is not involved,
- (maybe both are not involved, that’s covered by the “or”).

These are not the same
Recursive formulation
of the optimal solution

\[
C[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\
\max\{C[i, j - 1], C[i - 1, j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0
\end{cases}
\]
Recipe for applying Dynamic Programming

• **Step 1**: Identify optimal substructure.
• **Step 2**: Find a recursive formulation for the length of the longest common subsequence.
• **Step 3**: Use dynamic programming to find the length of the longest common subsequence.
LCS DP OMG BBQ

- **LCS**\((X, Y) \):
 - \(C[i,0] = C[0,j] = 0 \) for all \(i = 1,\ldots,m \), \(j=1,\ldots,n \).
 - For \(i = 1,\ldots,m \) and \(j = 1,\ldots,n \):
 - If \(X[i] = Y[j] \):
 - \(C[i,j] = C[i-1,j-1] + 1 \)
 - Else:
 - \(C[i,j] = \max\{ C[i,j-1], C[i-1,j] \} \)

Running time: \(O(nm) \)
Example

C[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
C[i-1, j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\
\max\{ C[i-1, j], C[i, j-1], C[i-1, j-1] \} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0
\end{cases}
Example

So the LCS of X and Y has length 3.

\[c[i,j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
C[i - 1, j - 1] + 1 & \text{if } X[i] = Y[j] \text{ and } i, j > 0 \\
\max\{C[i, j - 1], C[i - 1, j]\} & \text{if } X[i] \neq Y[j] \text{ and } i, j > 0
\end{cases} \]
Recipe for applying Dynamic Programming

- **Step 1**: Identify optimal substructure.
- **Step 2**: Find a recursive formulation for the length of the longest common subsequence.
- **Step 3**: Use dynamic programming to find the length of the longest common subsequence.
- **Step 4**: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
Finding an LCS

- See lecture notes for pseudocode
- Takes time $O(mn)$ to fill the table
- Takes time $O(n + m)$ on top of that to recover the LCS
 - We walk up and left in an n-by-m array
 - We can only do that for $n + m$ steps.
- Altogether, we can find LCS(X,Y) in time $O(mn)$.
Time and Space complexity

• If we are only interested in the length of the LCS:
 • Since we go across the table one-row-at-a-time, we can only keep two rows if we want.
 • If we want to recover the LCS, we need to keep the whole table.

• Can we do better than \(O(mn) \) time?
 • A bit better.
 • By a log factor or so.
 • But doing much better (e.g. \(O(mn^{0.9}) \)) is an open problem!
 • If you can do it let me know 😊
What have we learned?

● We can find LCS(X,Y) in time $O(nm)$
 ○ if $|Y|=n$, $|X|=m$

● We went through the steps of coming up with a dynamic programming algorithm.
 ○ We kept a 2-dimensional table, breaking down the problem by decrementing the length of X and Y.
Graphs: Bellman-Ford and Floyd-Warshall
Shortest path DP by recipe

- **Step 1:**

 Optimal substructure: shortest path using \(\leq i \) edges

- **Step 2:**

 Suppose we already know \(d^i(s,u) \) for fixed \(s \) and all \(u \)

 Recursive formulation: \(d^{i+1}(s,v) = \min_u \{d^i(s,u)+w(u,v)\} \)

- **Step 3+4:** Later…
Step 3: write the algorithm

Bellman-Ford(G,s):

- \(d^{(0)}[v] = \infty\) for all \(v\) in \(V\) // initialize:
- \(d^{(0)}[s] = 0\)

- **For** \(i=0,...,n-2\):
 - \(d^{(i+1)}[v] = d^{(i)}[v]\) for all \(v\) in \(V\) // baseline distance:
 - \(v\) doesn’t need \((i+1)\)\(^{th}\) edge

- **For** \(v\) in \(V\):
 - **For** \(u\) in \(v\).neighbors:
 - \(d^{(i+1)}[v] \leftarrow \min(d^{(i+1)}[v], d^{(i)}[u] + \text{edgeWeight}(u,v))\) // found a better path through \(u\)

- **Return** \(d^{(n-1)}\)
Bellman-Ford take-aways

● Running time is $O(mn)$
 ○ For each of n rounds, update m edges.

- For $i=0,...,n-1$:
 - For u in V:
 - For v in u.neighbors:

$$m = \# \text{ of edges} = \frac{1}{2} \sum_{v \in V} \text{degree}(v)$$

● Works fine with negative edges.
● Does not work with negative cycles.
 ○ But it can detect negative cycles!
Note on implementation

- Don’t actually keep all n arrays around.
- Just keep two at a time: “last round” and “this round”

Table:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>Stanford</th>
<th>Point Reyes</th>
<th>S.F.</th>
<th>e</th>
<th>Yosemite</th>
<th>Yellowstone</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>∞</td>
<td>-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td>0</td>
<td>-5</td>
<td>2</td>
<td>7</td>
<td>-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td>-4</td>
<td>-5</td>
<td>-4</td>
<td>6</td>
<td>-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td>-4</td>
<td>-5</td>
<td>-4</td>
<td>6</td>
<td>-7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Only need these two in order to compute $d^{(4)}$.
Floyd-Warshall Algorithm
Another example of DP

● This is an algorithm for **All-Pairs Shortest Paths (APSP)**
 ○ That is, I want to know the shortest path from u to v for **ALL pairs** u,v of vertices in the graph.
 ○ Not just from a special single source s.

```
<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>u</th>
<th>v</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>u</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>v</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

![Graph diagram](image)
Floyd-Warshall Algorithm
Another example of DP

• This is an algorithm for **All-Pairs Shortest Paths** (APSP)
 • That is, I want to know the shortest path from u to v for **ALL pairs** u,v of vertices in the graph.
 • Not just from a special single source s.

• Naïve solution:
 • For all s in G:
 • Run Bellman-Ford on G starting at s.

• Time $O(n \cdot nm) = O(n^2 m)$,
 • may be as bad as n^4 if $m = n^2$

Can we do better?
Floyd-Warshall algorithm

- Initialize n-by-n arrays $D^{(k)}$ for $k = 0,...,n$
 - $D^{(k)}[u,u] = 0$ for all u, for all k
 - $D^{(k)}[u,v] = \infty$ for all $u \neq v$, for all k
 - $D^{(0)}[u,v] = \text{weight}(u,v)$ for all (u,v) in E.
- For $k = 1, ..., n$:
 - For pairs u,v in V^2:
 - $D^{(k)}[u,v] = \min\{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \}$
- Return $D^{(n)}$

The base case checks out: the only path through zero other vertices are edges directly from u to v.
We’ve basically just shown

● Theorem:
If there are no negative cycles in a weighted directed graph G, then the Floyd-Warshall algorithm, running on G, returns a matrix \(D^{(n)} \) so that:

\[
D^{(n)}[u,v] = \text{distance between } u \text{ and } v \text{ in } G.
\]

● Running time: \(O(n^3) \)
 ○ Better than running Bellman-Ford n times!

● Storage:
 ○ Need to store two \(n \)-by-\(n \) arrays, and the original graph.

As with Bellman-Ford, we don’t really need to store all \(n \) of the \(D^{(k)} \).
Recap of today’s lecture

- **Shortest Path in weighted graph w/ dynamic programming**
 - **Bellman-Ford**: Single Source Shortest Path (SSSP)
 - **Optimal substructure**: shortest path with \(\leq i \) edges
 - Run time: \(O(nm) \)
 - **Floyd-Warshall**: All Pairs Shortest Path (APSP)
 - **Optimal substructure**: shortest path using vertices \(\{1,...,k-1\} \)
 - Run time \(O(n^3) \)
Thank you!