Exercise 0

Sometimes it can be tricky to tell when a greedy algorithm applies. For each problem, say whether or not the greedy solution would work. If it wouldn’t, give a counter example.

1. You have unlimited objects of different sizes, and you want to completely fill a bag with as few objects as possible. (Greedy: Keep putting in the largest object possible given the space you have left.)

2. You have unlimited objects, all of which are size 3^k for different integers k, and you want to completely fill a bag with as few objects as possible. (Greedy: Same approach as the previous part.)

3. You have lines that can fit a fixed number of characters. You want to print out a given piece of text while using as few lines as possible. (Greedy: Always fit as many words as you can on the next line.)

Exercise 1

Suppose we are given n ropes of different lengths, and we want to tie these ropes into a single rope. The cost to connect two ropes is equal to sum of their lengths. We want to connect all the ropes at minimum cost.

For example, suppose we have 4 ropes of lengths 7, 3, 5, and 1. One (not optimal!) solution would be to combine the 7 and 3 rope for a rope of size 10, then combine this new size 10 rope with the size 5 rope for a rope of size 15, then combine the rope of size 15 with the rope of size 1 for a final rope of size 16. The total cost would be $10 + 15 + 16 = 41$. (Note: the optimal cost for this problem is 29. How might you combine the ropes to achieve that cost?)

Find a greedy algorithm for the minimum cost and prove the correctness of your algorithm.

Exercise 2

Minimum graph coloring is an open NP-hard problem for finding the minimum number of colors needed to color all the nodes in a graph such that no nodes of the same color share an edge.

1. Although the problem is NP-hard, we can use greedy algorithms to obtain a pretty good solution.
 Describe a greedy algorithm that never uses more than $d + 1$ colors, where d is the maximum degree of a vertex in the given graph. Your algorithm should run in $O(n^2)$ where n is the number of nodes.
2. Prove by counterexample that your greedy algorithm does not always return the correct minimum coloring. Your solution should include a graph, the correct minimum coloring, and the coloring returned by the greedy algorithm.

3. Prove that your greedy algorithm will return a coloring that uses at most \(d + 1 \) colors. (Note: You may use proof by induction, but you do not need to for this problem.)

Exercise 3

We are given an undirected weighted graph \(G = (V, E) \) and a set \(U \subset V \). Describe an algorithm to find a minimum spanning tree such that all nodes in \(U \) are leaf nodes. (The result may not be an MST of the original graph \(G \).)

Exercise 4

Given a set of \(n \) cities, we would like to build a transportation system such that there is some path from any city \(i \) to any other city \(j \). There are two ways to travel: by driving or by flying. Initially all of the cities are disconnected. It costs \(r_{ij} \) to build a road between city \(i \) and city \(j \). It costs \(a_i \) to build an airport in city \(i \). For any two cities \(i \) and \(j \), we can fly directly from \(i \) to \(j \) if there is an airport in both cities. Give an efficient algorithm for determining which roads and airports to build to minimize the cost of connecting the cities.