Poll results

As of 1am this morning...

- Big-Oh notation
- Solving recurrences
- Sorting: QuickSort, MergeSort, RadixSort
- Sorting lower bounds
- Select
- Binary Search Trees and Red-Black trees
- Universal hashing and hash tables
- BFS/DFS
- Strongly Connected Components
- Shortest paths in graphs: Dijkstra/Bellman-Ford
- Minimum spanning trees: Prim and Kruskal
- Minimum cuts and maximum flows: Karger's Algorithm
- Divide and conquer
- Dynamic Programming
- Greedy algorithms
I have a bunch of practice problems.

Y’all vote on topics and we’ll do them.

I can also answer particular questions about the material.

Topics I have problems for:
- Grab-bag (multiple choice, etc)
- Hashing
- Red-Black Trees
- Ford-Fulkerson
- Dynamic Programming
- Greedy algorithms
- Divide and conquer
- Randomized algs
Multiple choice warmup!

For each of the following quantities, **identify all of the options** that correctly describe the quantity.

(a) The function $f(n)$, where $f(n) = n \log(n)$.

(b) $T(n)$ given by $T(n) = T(n/4) + \Theta(n^2)$ with $T(n) = 1$ for all $n \leq 8$.

(c) $T(n)$ which is the running time of the following algorithm:

```python
mysteryAlg( n ):
    if n < 3:
        return 1
    return mysteryAlg( n/2 ) + mysteryAlg( (n/2) + 1 )
```

where above all division is integer division (so a/b means $\lfloor a/b \rfloor$).

(A) $O(n^2)$ (B) $\Theta(n^2)$ (C) $\Omega(n)$ (D) $O(n)$ (E) $O(\log^2(n))$.

CS161 Review Session Practice Problems
12/6/2017 4 / 15
Prove or give a counter-example

Let $G = (V, E)$ be an undirected weighted graph, and let T be a minimum spanning tree in G. Decide whether the following statements must be true or may be false, and prove it!

(a) For any pair of distinct vertices $s, t \in V$, there is a unique path from s to t in T.

 True False

(b) For any pair of distinct vertices $s, t \in V$, the cost of a path between s and t in T is minimal among all paths from s to t in G.

 True False
Hashing warm-up

Let \(\mathcal{U} \) be a universe of size \(m \), where \(m \) is a prime, and consider the following two hash families which hash \(\mathcal{U} \) into \(n \) buckets, where \(n \) is much smaller than \(m \).

- First, consider \(\mathcal{H}_1 \), which is the set of all functions from \(\mathcal{U} \) to \(\{1, \ldots, n\} \):
 \[
 \mathcal{H}_1 = \{ h \mid h : \mathcal{U} \rightarrow \{1, \ldots, n\} \}
 \]

- Second, let \(p = m \) (so \(p \) is prime since we assumed \(m \) to be prime), and choose \(\mathcal{H}_2 \) to be
 \[
 \mathcal{H}_2 = \{ h_{a,b} \mid a \in \{1, \ldots, p - 1\}, b \in \{0, \ldots, p - 1\} \},
 \]
 where \(h_{a,b}(x) = (ax + b \mod p) \mod n \).

You want to implement a hash table using one of these two families. Why would you choose \(\mathcal{H}_2 \) over \(\mathcal{H}_1 \)? Choose the best answer.

(A) \(\mathcal{H}_1 \) isn't a universal hash family.

(B) Storing an element of \(\mathcal{H}_1 \) takes a lot of space.

(C) Storing all of \(\mathcal{H}_1 \) takes a lot of space.
Shortest Paths

- When might you prefer breadth-first search to Dijkstra’s algorithm?

- When might you prefer Floyd-Warshall to Bellman-Ford?

- When might you prefer Bellman-Ford to Dijkstra’s algorithm?
Suppose that b_1, \ldots, b_n are n distinct integers in a uniformly random order. Consider the following algorithm:

```python
findMax(b_1,\ldots,b_n):
    currentMax = -Infinity
    for i = 1,\ldots,n:
        if b_i > currentMax:
            currentMax = b_i
    return currentMax
```

What is the expected number of times that `currentMax` is updated? (Asymptotic notation is fine).
Consider the following flow on a graph. The notation x/y means that an edge has flow x out of capacity y.

- Draw the residual graph for this flow.
- Find an augmenting path in the residual graph and use it to increase the flow.
- Find a minimum cut and prove (not by exhaustion) that it is a minimum cut.
Suppose that roads in a city are laid out in an $n \times n$ grid, but some of the roads are obstructed.

For example, for $n = 3$, the city may look like this:

![Diagram](image)

where we have only drawn the roads that are not blocked. You want to count the number of ways to get from $(0, 0)$ to $(n - 1, n - 1)$, using paths that only go up and to the right. In the example above, the number of paths is 3.

Design a DP algorithm to solve this problem.
Divide and Conquer!

- Given an array A of length n, we say that an array B is a **circular shift** of A if there is an integer k between 1 and n (inclusive) so that

 where $+$ denotes concatenation.

- For example, if $A = [2, 5, 6, 8, 9]$, then $B = [6, 8, 9, 2, 5]$ is a circular shift of A (with $k = 2$). The sorted array A itself is also a circular shift of A (with $k = 1$).

- Design a $O(\log(n))$-time algorithm that takes as input an array B which is a circular shift of a sorted array which contains distinct positive integers, and returns the value of the largest element in B. For example, give B as above, your algorithm should return 9.
Greedy Algorithms!

There are n final exams on Dec. 13 at Stanford; exam i is scheduled to begin at time a_i and end at time b_i. Two exams which overlap cannot be administered in the same classroom; two exams i and j are defined to be overlapping if $[a_i, b_i] \cap [a_j, b_j] \neq \emptyset$ (including if $b_i = a_j$, so one starts exactly at the time that the other ends). Design an algorithm which solves the following problem.

- **Input:** Arrays A and B of length n so that $A[i] = a_i$ and $B[i] = b_i$.
- **Output:** The smallest number of classrooms necessary to schedule all of the exams, and an optimal assignment of exams to classrooms.
- **Running time:** $O(n \log(n) + nk)$, where k is the minimum number of classrooms needed.
- **For example:** Suppose there are three exams, with start and finish times as given below:

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_i</td>
<td>12pm</td>
<td>4pm</td>
<td>2pm</td>
</tr>
<tr>
<td>b_i</td>
<td>3pm</td>
<td>6pm</td>
<td>5pm</td>
</tr>
</tbody>
</table>

Then the exams can be scheduled in two rooms; Exam 1 and Exam 2 can be scheduled in Room 1 and Exam 3 can be scheduled in Room 2.
Universal Hash Families

Definition: A hash family \(\mathcal{H} \) (mapping \(\mathcal{U} \) into \(n \) buckets) is **2-universal** if for all \(x \neq y \in \mathcal{U} \) and for all \(a, b \in \{1, \ldots, n\} \),

\[
\Pr((h(x), h(y)) = (a, b)) = \frac{1}{n^2}.
\]

(a) Show that if \(\mathcal{H} \) is 2-universal, then it is universal.

(b) Show that the converse is not true. That is, there is a universal family that’s not 2-universal.
More universal hash families

Say that \mathcal{H} is a universal hash family, containing functions $h : \mathcal{U} \rightarrow \{1, \ldots, n\}$. Consider the following game.

- You choose $h \in \mathcal{H}$ uniformly at random and keep it secret.
- A bad guy chooses $x \in \mathcal{U}$, and asks you for $h(x)$. (You give it to them).
- The bad guy chooses $y \in \mathcal{U}$, and tries to get $h(y) = h(x)$.
- If $h(x) = h(y)$, the bad guy wins. Otherwise, you win.

One of the following two is true.

1. There is a universal hash family \mathcal{H} so that the bad guy wins with probability 1.
2. For any universal hash family \mathcal{H}, the probability that the bad guy wins is at most $1/n$.

Which is true and why?
Red-Black Trees

Which of the following can be colored as a red-black tree? Either give a coloring or explain why not.