Balanced Trees
Part One
Balanced Trees

- Balanced search trees are among the most useful and versatile data structures.
- Many programming languages ship with a balanced tree library.
 - C++: std::map / std::set
 - Java: TreeMap / TreeSet
- Many advanced data structures are layered on top of balanced trees.
 - We’ll see several later in the quarter!
Where We're Going

- **B-Trees (Today)**
 - A simple type of balanced tree developed for block storage.

- **Red/Black Trees (Today/Thursday)**
 - The canonical balanced binary search tree.

- **Augmented Search Trees (Thursday)**
 - Adding extra information to balanced trees to supercharge the data structure.
Outline for Today

• **BST Review**
 • Refresher on basic BST concepts and runtimes.

• **Overview of Red/Black Trees**
 • What we're building toward.

• **B-Trees and 2-3-4 Trees**
 • Simple balanced trees, in depth.

• **Intuiting Red/Black Trees**
 • A much better feel for red/black trees.
A Quick BST Review
Binary Search Trees

- A **binary search tree** is a binary tree with the following properties:
 - Each node in the BST stores a **key**, and optionally, some auxiliary information.
 - The key of every node in a BST is strictly greater than all keys to its left and strictly smaller than all keys to its right.
Binary Search Trees

- The **height** of a binary search tree is the length of the longest path from the root to a leaf, measured in the number of *edges*.
 - A tree with one node has height 0.
 - A tree with no nodes has height -1, by convention.
Searching a BST
Inserting into a BST
Inserting into a BST

```
137
  /   \\
/     \
73     271
   /     \
  |       |
  |       |
  42     161
   /   \\
/     \
60     314
```

166 (circled)
Delete \textbf{60} from this tree, then \textbf{73}, and then \textbf{137}.

Pause and work this out with a pencil and paper!
Deleting from a BST
Case 0: If the node has just no children, just remove it.
Deleting from a BST

![Binary Search Tree Diagram]

- Node 137
 - Left child: Node 73
 - Left child: Node 42
 - Right child: Node 161
 - Right child: Node 271
 - Right child: Node 314
 - Right child: Node 166
Deleting from a BST

Case 1: If the node has just one child, remove it and replace it with its child.
Deleting from a BST

```
  137
  /   \
 42    271
/   /   /
161 166 314
```
Deleting from a BST
Deleting from a BST
Case 2: If the node has two children, find its inorder successor (which has zero or one child), replace the node's key with its successor's key, then delete its successor.
Runtime Analysis

• The time complexity of all these operations is $O(h)$, where h is the height of the tree.
 • That’s the longest path we can take.
• In the best case, $h = O(\log n)$ and all operations take time $O(\log n)$.
• In the worst case, $h = \Theta(n)$ and some operations will take time $\Theta(n)$.
 • **Challenge:** How do you efficiently keep the height of a tree low?
A Glimpse of Red/Black Trees
Red/Black Trees

• A **red/black tree** is a BST with the following properties:

 • Every node is either red or black.
 • The root is black.
 • No red node has a red child.
 • Every root-null path in the tree passes through the same number of black nodes.
Red/Black Trees

• A **red/black tree** is a BST with the following properties:
 • Every node is either red or black.
 • The root is black.
 • No red node has a red child.
 • Every root-null path in the tree passes through the same number of black nodes.
A red/black tree is a BST with the following properties:

- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in the tree passes through the same number of black nodes.
Red/Black Trees

- A red/black tree is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.
Red/Black Trees

- A red/black tree is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.
Red/Black Trees

- **Theorem**: Any red/black tree with n nodes has height $O(\log n)$.
 - We could prove this now, but there's a much simpler proof of this we'll see later on.
- Given a fixed red/black tree, lookups can be done in time $O(\log n)$.
Mutating Red/Black Trees
Mutating Red/Black Trees

What are we supposed to do with this new node?
Mutating Red/Black Trees
How do we fix up the black-height property?
Fixing Up Red/Black Trees

- **The Good News:** After doing an insertion or deletion, we can locally modify a red/black tree in time $O(\log n)$ to fix up the red/black properties.

- **The Bad News:** There are a lot of cases to consider and they're not trivial.

- Some questions:
 - How do you memorize / remember all the rules for fixing up the tree?
 - How on earth did anyone come up with red/black trees in the first place?
Fixing Up Red/Black Trees

- **The Good News:** After doing an insertion or deletion, we can locally modify a red/black tree in time $O(\log n)$ to fix up the red/black properties.

- **The Bad News:** There are a lot of cases to consider and they're not trivial.

- Some questions:
 - How do you memorize / remember all the rules for fixing up the tree?
 - How on earth did anyone come up with red/black trees in the first place?
B-Trees
Generalizing BSTs

- In a binary search tree, each node stores a single key.
- That key splits the “key space” into two pieces, and each subtree stores the keys in those halves.
Generalizing BSTs

- In a *multiway search tree*, each node stores an arbitrary number of keys in sorted order.
- A node with k keys splits the key space into $k + 1$ regions, with subtrees for keys in each region.
Generalizing BSTs

• In a *multiway search tree*, each node stores an arbitrary number of keys in sorted order.

• Surprisingly, it’s a bit easier to build a balanced multiway tree than it is to build a balanced BST. Let’s see how.
Balanced Multiway Trees

• In some sense, building a balanced multiway tree isn’t all that hard.

• We can always just cram more keys into a single node!

 23 26 31 41 53 58 59 62 84 93 97

• At a certain point, this stops being a good idea – it’s basically just a sorted array. What does “balance” even mean here?
Balanced Multiway Trees

• What could we do if our nodes get too big?

• **Option 1:** Push the new key down into its own node.

• **Option 2:** Split big nodes in half, kicking the middle key up.

• Assume that, during an insertion, we add keys to the deepest node possible.

• How do these options compare?

23 26 31 41 53 58 59 84 93 97

Pause and explore this before moving on!
Balanced Multiway Trees

• **Option 1:** Push keys down into new nodes.
 • Simple to implement.
 • Can lead to tree imbalances.

10 99 50 20 40 30 31 39 35 32 33 34
Balanced Multiway Trees

- **Option 1**: Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
Balanced Multiway Trees

• **Option 1:** Push keys down into new nodes.
 • Simple to implement.
 • Can lead to tree imbalances.

• **Option 2:** Split big nodes, kicking keys higher up.
 • Keeps the tree balanced.
 • Slightly trickier to implement.
Balanced Multiway Trees

- **Option 1**: Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- **Option 2**: Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

Each existing node’s depth just increased by one.
Balanced Multiway Trees

- **Option 1:** Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- **Option 2:** Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.
Balanced Multiway Trees

- **General idea:** Cap the maximum number of keys in a node. Add keys into leaves. Whenever a node gets too big, split it and kick one key higher up the tree.

- **Advantage 1:** The tree is always balanced.
- **Advantage 2:** Insertions and lookups are pretty fast.
Balanced Multiway Trees

- We currently have a *mechanical description* of how these balanced multiway trees work:
 - Cap the size of each node.
 - Add keys into leaves.
 - Split nodes when they get too big and propagate the splits upward.
- We currently don’t have an *operational definition* of how these balanced multiway trees work.
 - e.g. “A Cartesian tree for an array is a binary tree that’s a min-heap and whose inorder traversal gives back the original array.”
A **B-tree of order b** is a multiway search tree where

- each node has between $b-1$ and $2b-1$ keys, except the root,
 which may have between 1 and $2b-1$ keys;
- each node is either a leaf or has one more child than key; and
- all leaves are at the same depth.

Different authors give different bounds on how many keys can be in each node. The ranges are often $[b-1, 2b-1]$ or $[b, 2b]$. For the purposes of today’s lecture, we’ll use the range $[b-1, 2b-1]$ for the key limits, just for simplicity.
Analyzing B-Trees
The Height of a B-Tree

• What is the maximum possible height of a B-tree of order b that holds n keys?

Intuition: The branching factor of the tree is at least b, so the number of keys per level grows exponentially in b. Therefore, we’d expect something along the lines of $O(\log_b n)$.
The Height of a B-Tree

- What is the maximum possible height of a B-tree of order b that holds n keys?

$$2^{h-1}(b - 1)$$
The Height of a B-Tree

- **Theorem:** The maximum height of a B-tree of order \(b \) containing \(n \) keys is \(O(\log_b n) \).

- **Proof:** Number of keys \(n \) in a B-tree of height \(h \) is guaranteed to be at least

 \[
 1 + 2(b - 1) + 2b(b - 1) + 2b^2(b - 1) + \ldots + 2b^{h-1}(b - 1)
 \]

 \[
 = 1 + 2(b - 1)(1 + b + b^2 + \ldots + b^{h-1})
 \]

 \[
 = 1 + 2(b - 1)((b^h - 1) / (b - 1))
 \]

 \[
 = 1 + 2(b^h - 1) = 2b^h - 1.
 \]

 Solving \(n = 2b^h - 1 \) yields \(h = \log_b ((n + 1) / 2) \), so the height is \(O(\log_b n) \).
Analyzing Efficiency

- Suppose we have a B-tree of order b.
- What is the worst-case runtime of looking up a key in the B-tree?

Pause, and formulate a hypothesis!
Analyzing Efficiency

- Suppose we have a B-tree of order b.

- What is the worst-case runtime of looking up a key in the B-tree?

- \textbf{Answer:} It depends on how we do the search!
Analyzing Efficiency

• To do a lookup in a B-tree, we need to determine which child tree to descend into.

• This means we need to compare our query key against the keys in the node.

• **Question:** How should we do this?
Analyzing Efficiency

- **Option 1:** Use a linear search!
- Cost per node: $O(b)$.
- Nodes visited: $O(\log_b n)$.
- Total cost:
 $$O(b) \cdot O(\log_b n) = O(b \log_b n)$$
Analyzing Efficiency

• **Option 2:** Use a binary search!

• Cost per node: $O(\log b)$.

• Nodes visited: $O(\log_b n)$.

• Total cost:

 $O(\log b) \cdot O(\log_b n)$

 $= O(\log b \cdot \log_b n)$

 $= O(\log b \cdot (\log n) / (\log b))$

 $= O(\log n)$.

Intuition: We can’t do better than $O(\log n)$ for arbitrary data, because it’s the information-theoretic minimum number of comparisons needed to find something in a sorted collection!
Analyzing Efficiency

- Suppose we have a B-tree of order b.
- What is the worst-case runtime of inserting a key into the B-tree?
- Each insertion visits $O(\log_b n)$ nodes, and in the worst case we have to split every node we see.

Answer: $O(b \log_b n)$.
Analyzing Efficiency

- The cost of an insertion in a B-tree of order b is $O(b \log_b n)$.
- What’s the best choice of b to use here?
- Note that
 \[
 b \log_b n = b \left(\frac{\log n}{\log b}\right) = \left(\frac{b}{\log b}\right) \log n.
 \]
- What choice of b minimizes $b / \log b$?
- **Answer:** Pick $b = e$. (Or rather, $b = \lfloor e \rfloor = 2$.)

Fun fact: This is the same time bound you’d get if you used a b-ary heap instead of a binary heap for a priority queue.
2-3-4 Trees

- A **2-3-4 tree** is a B-tree of order 2. Specifically:
 - each node has between 1 and 3 keys;
 - each node is either a leaf or has one more child than key; and
 - all leaves are at the same depth.
- You actually saw this B-tree earlier! It’s the type of tree from our insertion example.
The Story So Far

- A B-tree supports
 - lookups in time $O(\log n)$, and
 - insertions in time $O(b \log_b n)$.
- Picking b to be around 2 or 3 makes this optimal in Theoryland.
 - The 2-3-4 tree is great for that reason.
- **Plot Twist:** In practice, you most often see choices of b like 1,024 or 4,096.
- **Question:** Why would anyone do that?
Theoryland

IRL
The Memory Hierarchy
Memory Tradeoffs

- There is an enormous tradeoff between speed and size in memory.
- SRAM (the stuff registers are made of) is fast but very expensive:
 - Can keep up with processor speeds in the GHz.
 - SRAM units can’t be easily combined together; increasing sizes require better nanofabrication techniques (difficult, expensive!)
- Hard disks are cheap but very slow:
 - As of 2021, you can buy a 4TB hard drive for about $70.
 - As of 2021, good disk seek times for magnetic drives are measured in ms (about two to four million times slower than a processor cycle!)
The Memory Hierarchy

Idea: Try to get the best of all worlds by using multiple types of memory.
The Memory Hierarchy

- **Idea:** Try to get the best of all worlds by using multiple types of memory.
External Data Structures

- Suppose you have a data set that’s way too big to fit in RAM.
- The data structure is on disk and read into RAM as needed.
- Data from disk doesn’t come back one byte at a time, but rather one page at a time.
- **Goal:** Minimize the number of disk reads and writes, not the number of instructions executed.
External Data Structures

• Suppose you have a data set that’s \textit{way} too big to fit in RAM.
• The data structure is on disk and read into RAM as needed.
• Data from disk doesn’t come back one \textit{byte} at a time, but rather one \textit{page} at a time.
• \textbf{Goal:} Minimize the number of disk reads and writes, not the number of instructions executed.
Analyzing B-Trees

- Suppose we tune b so that each node in the B-tree fits inside a single disk page.
- We *only* care about the number of disk pages read or written.
 - It’s so much slower than RAM that it’ll dominate the runtime.
- **Question:** What is the cost of a lookup in a B-tree in this model?
 - Answer: The height of the tree, $O(\log_b n)$.
- **Question:** What is the cost of inserting into a B-tree in this model?
 - Answer: The height of the tree, $O(\log_b n)$.
External Data Structures

• Because B-trees have a huge branching factor, they're great for on-disk storage.
 • Disk block reads/writes are slow compared to CPU operations.
 • The high branching factor minimizes the number of blocks to read during a lookup.
 • Extra work scanning inside a block offset by these savings.
• Major use cases for B-trees and their variants (B^+-trees, H-trees, etc.) include
 • databases (huge amount of data stored on disk);
 • file systems (ext4, NTFS, ReFS); and, recently,
 • in-memory data structures (due to cache effects).
Analyzing B-Trees

- The cost model we use will change our overall analysis.
- Cost is number of operations:
 \[O(\log n) \] per lookup, \[O(b \log_b n) \] per insertion.
- Cost is number of blocks accessed:
 \[O(\log_b n) \] per lookup, \[O(\log_b n) \] per insertion.
- Going forward, we’ll use operation counts as our cost model, though looking at caching effects of data structures would make for an awesome final project!
The Story So Far

- We’ve just built a simple, elegant, balanced multiway tree structure.
- We can use them as balanced trees in main memory (2-3-4 trees).
- We can use them to store huge quantities of information on disk (B-trees).
- We’ve seen that different cost models are appropriate in different situations.
So... red/black trees?
Red/Black Trees

- A red/black tree is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.

```
  7  3  5  6  11  9  12  10
     1  2  4  8
        1
```
Red/Black Trees

- A red/black tree is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.
- After we hoist red nodes into their parents:
 - Each “meta node” has 1, 2, or 3 keys in it. (No red node has a red child.)
 - Each “meta node” is either a leaf or has one more child than key. (Root-null path property.)
 - Each “meta leaf” is at the same depth. (Root-null path property.)
Data Structure Isometries

- Red/black trees are an isometry of 2-3-4 trees; they represent the structure of 2-3-4 trees in a different way.
- Many data structures can be designed and analyzed in the same way.
- **Huge advantage:** Rather than memorizing a complex list of red/black tree rules, just think about what the equivalent operation on the corresponding 2-3-4 tree would be and simulate it with BST operations.
Next Time

- **Deriving Red/Black Trees**
 - Figuring out rules for red/black trees using our isometry.

- **Tree Rotations**
 - A key operation on binary search trees.

- **Augmented Trees**
 - Building data structures on top of balanced BSTs.