
  

Better than Balanced BSTs



  

Outline for Today
● Beyond Worst-Case Efficiency

● When O(log n) isn’t enough.
● Shannon Entropy

● Balancing by access probabilities.
● Finger Search Trees

● Picking up where you left off.
● Iacono’s Working Set Structure

● Keeping exciting things accessible.



  

Can you build a binary search tree where 
lookups are faster than O(log n)?



  

Key Idea: The guarantees we want from a 
data structure depend on our model of how 

that data structure will be used.



  Model 1: Queries are chosen maliciously.

2

1 3

6

5 7

10

9 11

14

13 15

124

8

2

1 3

11

7 12

8

10

9

13

15

14

6

5

4

Claim: The worst-case lookup 
cost of a lookup in any BST with 

n nodes is at least Ω(log n).

Why?

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23


  Model 1: Queries are chosen maliciously.

2

1 3

6

5 7

10

9 11

14

13 15

124

8

2

1 3

11

7 12

8

10

9

13

15

14

6

5

4

Proof Idea: Every tree with n 
nodes has height Ω(log n). Pick 
the deepest node in the tree.

Claim: The worst-case lookup 
cost of a lookup in any BST with 

n nodes is at least Ω(log n).



  Model 1: Queries are chosen maliciously.

2

1 3

11

7 12

8

10

9

2

1 3

6

5 7

10

9 11

14

13 15

124

8

13

15

14

6

5

4

 

Any BST with this property is optimal 
from a worst-case perspective.

“Classical” balanced trees (red/black, 
etc.) are designed to have this property.

A binary search tree satisfies the balance 
property if the (amortized) cost of any 

lookup in that tree is O(log n).



  Model 2: Queries are sampled from a
fixed, known probability distribution.

1 3 5 7

62

4

1

3

2

7

4

5

6

1 2 3 4 5 6 7

20% 10% 40% 8% 1% 1% 20%

Access Probabilities
Expected 

comparisons in a 
lookup: 1.83

Expected 
comparisons in a 

lookup: 2.73



  Model 2: Queries are sampled from a
fixed, known probability distribution.

1

3

1 3 5 7

62

42

7

4

5

6

1 2 3 4 5 6 7

14% 15% 14% 14% 14% 15% 14%

Access Probabilities
Expected 

comparisons in a 
lookup: 2.87

Expected 
comparisons in a 

lookup: 2.42



  Model 2: Queries are sampled from a
fixed, known probability distribution.

1

3

1 3 5 7

62

42

7

4

5

6

How do we know when we 
have a BST that’s optimal 
with respect to expected 

lookup costs?



  Model 2: Queries are sampled from a
fixed, known probability distribution.

Intuition: Place high 
probability elements 

high in the tree.
Keys with access 
probability ½ or 
higher, ideally, 

shouldn’t go below 
here.

Keys with access 
probability ¹/₁₆ or higher, 

ideally, shouldn’t be 
below here.



  Model 2: Queries are sampled from a
fixed, known probability distribution.

Intuition: Place high 
probability elements 

high in the tree. Ideally, a key goes in layer 
k or above if its access 

probability is at least 2-k.

∑
i=1

n

pi lg
1
pi

.

Equivalently, a key with 
access probability p would 
ideally be in layer lg (¹/ₚ) or 

higher.

Expected cost of a lookup 
would then be

(The notation lg n 
refers to log₂ n, the 
binary logarithm).



  Model 2: Queries are sampled from a
fixed, known probability distribution.

Theory Time!



  Model 2: Queries are sampled from a
fixed, known probability distribution.

Consider a discrete probability distribution with elements
x₁, …, xₙ, where element xᵢ has access probability pᵢ.

The Shannon entropy of this probability distribution, denoted 
Hₚ (or just H, where p is implicit) is the quantity

Hp = ∑
i=1

n

pi lg
1
pi

.

If you have n keys x₁, …, xₙ, what is 
the maximum possible value of H? 

What is the minimum possible 
value?

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23


  Model 2: Queries are sampled from a
fixed, known probability distribution.

Consider a discrete probability distribution with elements
x₁, …, xₙ, where element xᵢ has access probability pᵢ.

The Shannon entropy of this probability distribution, denoted 
Hₚ (or just H, where p is implicit) is the quantity

Hp = ∑
i=1

n

pi lg
1
pi

.

If all elements have equal 
access probability (pᵢ = ¹/ₙ):

Hp = ∑
i=1

n

pi lg
1
pi

  

= ∑
i=1

n 1
n lgn      

= lgn            

If only one element is ever 
accessed (p₁ = 1, pᵢ = 0), then

Hp = ∑
i=1

n

pi lg
1
pi

        

= lg1 + ∑
i=2

n

0lg 1
0

= 0                      



  Model 2: Queries are sampled from a
fixed, known probability distribution.

1

3

1 3 5 7

62

4

2

7

4

5

6

How do we know when we 
have a BST that’s optimal 
with respect to expected 

lookup costs?



  Model 2: Queries are sampled from a
fixed, known probability distribution.

1

3

2

7

4

5

6

Theorem: If accesses are sampled 
over a fixed discrete distribution, 

then the expected cost of a lookup in 
any BST is Ω(1 + H), where H is the 
Shannon entropy of the distribution.

A binary search tree has the 
entropy property if the (amortized) 
expected cost of any lookup on that 

BST is O(1 + H).
(Any BST with this property is 
optimal from a expected-case 
perspective, assuming a fixed 

probability distribution.)



  Model 2: Queries are sampled from a
fixed, known probability distribution.

Idea 1: Pick the root to 
be the highest-probability 

element. Then, 
recursively build the 

subtrees.

Question: Assuming you 
know the access 

probabilities, how could 
you build a BST with the 

entropy property?

Highest-
probability key



  Model 2: Queries are sampled from a
fixed, known probability distribution.

Idea 1: Pick the root to 
be the highest-probability 

element. Then, 
recursively build the 

subtrees.

Idea 2: Pick the root to 
balance the probabilities 
of the smaller elements 

and the bigger elements. 
Then, recursively build 

the subtrees.

Question: Assuming you 
know the access 

probabilities, how could 
you build a BST with the 

entropy property?

The probability 
masses of these 

subranges are as 
close as possible.

Highest-
probability key



  Model 2: Queries are sampled from a
fixed, known probability distribution.

Idea 2: Pick the root to 
balance the probabilities 
of the smaller elements 

and the bigger elements. 
Then, recursively build 

the subtrees.

Question: Assuming you 
know the access 

probabilities, how could 
you build a BST with the 

entropy property?

Idea 1: Pick the root to 
be the highest-probability 

element. Then, 
recursively build the 

subtrees.

A
1
5

+2ε B
1
5

+ε C
1
5 D

1
5

−ε E
1
5

−2εThe entropy here 
is roughly lg n, but 

this tree has 
height Θ(n).



  Model 2: Queries are sampled from a
fixed, known probability distribution.

Question: Assuming you 
know the access 

probabilities, how could 
you build a BST with the 

entropy property?

Idea 1: Pick the root to 
be the highest-probability 

element. Then, 
recursively build the 

subtrees.

Idea 2: Pick the root to 
balance the probabilities 
of the smaller elements 

and the bigger elements. 
Then, recursively build 

the subtrees.

A
1
5

+2ε

B
1
5

+ε

C
1
5

D
1
5

−ε

E
1
5

−2ε



  Model 2: Queries are sampled from a
fixed, known probability distribution.

A weight-equalized tree is 
a BST where the root is 
chosen to minimize the 

weight difference between 
the left and right subtrees.

Theorem: In a weight-
equalized tree with total 

weight W, the left and right 
subtrees each have weight at 

most 2W / 3.

Theorem: The above bound
is the tightest possible bound 
on the sizes of a node’s two 

subtrees in a weight-
equalized tree. (Prove this!)



  
Model 2: Queries are sampled from a
fixed, known probability distribution.

Theorem: Weight-equalized trees have the entropy property.
 
Proof: The expected cost of a lookup in a weight-equalized tree is

where pᵢ is the access probability of key xᵢ and lᵢ is the layer
of the weight-equalized tree containing xᵢ.

 

Focus on some key xᵢ and its depth lᵢ. At layer lᵢ in the tree, the
remaining probability mass is at most (²/₃)lᵢ. This means that
(²/₃)lᵢ ≥ pᵢ, so lᵢ ≤ -log3/2 pᵢ. Therefore, we see that

 

                                                                  

Probability of 
looking up xᵢ

Cost of looking up xᵢ: 
one comparison per 

layer descended, plus 
one final comparison 

confirming we have xᵢ.

∑
i=1

n

pi⋅(1 + li)



  
Model 2: Queries are sampled from a
fixed, known probability distribution.

Theorem: Weight-equalized trees have the entropy property.
 
Proof: The expected cost of a lookup in a weight-equalized tree is

where pᵢ is the access probability of key xᵢ and lᵢ is the layer
of the weight-equalized tree containing xᵢ.

 

Focus on some key xᵢ and its depth lᵢ. After taking lᵢ steps in
the tree, the remaining probability mass is at most (²/₃)lᵢ. This
means that (²/₃)lᵢ ≥ pᵢ, so lᵢ ≤ -log3/2 pᵢ. Therefore, we see that

 

                                                                  

∑
i=1

n

pi⋅(1 + li)

Theorem: In a weight-
equalized tree with total 

weight W, the left and right 
subtrees each have weight at 

most 2W / 3.



  
Model 2: Queries are sampled from a
fixed, known probability distribution.

Theorem: Weight-equalized trees have the entropy property.
 
Proof: The expected cost of a lookup in a weight-equalized tree is

where pᵢ is the access probability of key xᵢ and lᵢ is the layer
of the weight-equalized tree containing xᵢ.

 

Focus on some key xᵢ and its depth lᵢ. After taking lᵢ steps in
the tree, the remaining probability mass is at most (²/₃)lᵢ. This
means that (²/₃)lᵢ ≥ pᵢ, so lᵢ ≤ log3/2 (¹/pᵢ). Therefore, we see that

 

                                                                  

Adding up pᵢ over 
a probability 
distribution.

∑
i=1

n

pi⋅(1 + li)

∑
i=1

n

pi⋅(1 + li) ≤ ∑
i=1

n

pi⋅(1+ log3 /2
1
pi

)

= 1+∑
i=1

n

(pi log3 /2
1
pi

)

= O(1+H).

Shannon entropy 
in a different log 
base; a constant 

multiple of 
Shannon entropy.



  
Model 2: Queries are sampled from a
fixed, known probability distribution.

Theorem: Weight-equalized trees have the entropy property.
 
Proof: The expected cost of a lookup in a weight-equalized tree is

where pᵢ is the access probability of key xᵢ and lᵢ is the layer
of the weight-equalized tree containing xᵢ.

 

Focus on some key xᵢ and its depth lᵢ. After taking lᵢ steps in
the tree, the remaining probability mass is at most (²/₃)lᵢ. This
means that (²/₃)lᵢ ≥ pᵢ, so lᵢ ≤ log3/2 (¹/pᵢ). Therefore, we see that

 

                                                                  ■

∑
i=1

n

pi⋅(1 + li)

∑
i=1

n

pi⋅(1 + li) ≤ ∑
i=1

n

pi⋅(1+ log3 /2
1
pi

)

= 1+∑
i=1

n

(pi log3 /2
1
pi

)

= O(1+H).



  Model 2: Queries are sampled from a
fixed, known probability distribution.

Theorem: Weight-
equalized trees have the 

entropy property.

Fredman (1975): Weight-
equalized trees can be 

built in time O(n log n) in 
general and time O(n) if 

the keys are already 
sorted.

 

Knuth (1971): The 
absolute best possible BST 
for a given set of keys can 
be built in time O(n2) using 

dynamic programming.



  Model 3: Queries have spatial locality. If a key is
queried, keys with nearby values will likely be queried.

2

1 3

6

5 7

10

9 11

14

13 15

124

8

The balance property says the 
average cost of a lookup, across 

all nodes, is Ω(log n). Why 
doesn’t it apply here?

The entropy property says that, 
since each item is searched for 

exactly once, each lookup 
should take time Ω(log n). Why 

doesn’t it apply here?

It’s possible to visit all the 
nodes in any BST in sorted 
order in time O(n) via an 
inorder traversal, for an 

average lookup cost of O(1).



  Model 3: Queries have spatial locality. If a key is
queried, keys with nearby values will likely be queried.

2

1 3

6

5 7

10

9 11

14

13 15

124

8

The balance and entropy 
properties assume our searches 

start at the top of the tree.
 

In an inorder traversal, each 
search picks up where the last 
one left off. Therefore, these 

earlier bounds no longer apply.
 

Idea: Imagine we have a finger 
pointing at the last element of 

the BST that we’ve visited. 
After each lookup, the finger 
moves to the queried item.☞



  Model 3: Queries have spatial locality. If a key is
queried, keys with nearby values will likely be queried.

2

1 3

6

5 7

10

9 11

14

13 15

124

8

The balance and entropy 
properties assume our searches 

start at the top of the tree.
 

In an inorder traversal, each 
search picks up where the last 
one left off. Therefore, these 

earlier bounds no longer apply.
 

Idea: Imagine we have a finger 
pointing at the last element of 

the BST that we’ve visited. 
After each lookup, the finger 
moves to the queried item.

☞



  Model 3: Queries have spatial locality. If a key is
queried, keys with nearby values will likely be queried.

2

1 3

6

5 7

10

9 11

14

13 15

124

8

Question: Can you build a 
binary search tree where the 
cost of a lookup depends on 

how similar the item looked up 
is to the most-recently-visited 

item?

☞



  Model 3: Queries have spatial locality. If a key is
queried, keys with nearby values will likely be queried.

Suppose our last search was for some 
key x₁. Our next search is for key x₂. We 

know where key x₁ is.
 

Let Δ = |rank(x₂) – rank(x₁)|.
 

Can we do the search in time O(Δ)?
How about time O(log Δ)?

How about time O(log log Δ)?

11 13 17 19 21 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89☞
… than 83, 

which is far.
… it should be faster to 
find 37, which is near…

If the last key we 
searched for was 21…

(The number of 
positions away the two 

elements are in the 
sorted sequence.)

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23


  Model 3: Queries have spatial locality. If a key is
queried, keys with nearby values will likely be queried.

Suppose our last search was for some 
key x₁. Our next search is for key x₂. We 

know where key x₁ is.
 

Let Δ = |rank(x₂) – rank(x₁)|.
 

Can we do the search in time O(Δ)?
How about time O(log Δ)?

How about time O(log log Δ)?

11 13 17 19 21 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89☞
Idea: Just do a 

simple linear scan.



  Model 3: Queries have spatial locality. If a key is
queried, keys with nearby values will likely be queried.

Suppose our last search was for some 
key x₁. Our next search is for key x₂. We 

know where key x₁ is.
 

Let Δ = |rank(x₂) – rank(x₁)|.
 

Can we do the search in time O(Δ)?
How about time O(log Δ)?

How about time O(log log Δ)?

11 13 17 19 21 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89☞

Idea: Use an 
exponential search 
to overshoot, then 
binary search over 

the range.

Observation: This 
is asymptotically 

at least as good as 
a binary search.

1 2 4 8



  Model 3: Queries have spatial locality. If a key is
queried, keys with nearby values will likely be queried.

Suppose our last search was for some 
key x₁. Our next search is for key x₂. We 

know where key x₁ is.
 

Let Δ = |rank(x₂) – rank(x₁)|.
 

Can we do the search in time O(Δ)?
How about time O(log Δ)?

How about time O(log log Δ)?

11 13 17 19 21 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89☞

Δ = O(n).
 

So if we could do 
this, we could do all 

searches in time 
O(log log n), which 
is impossible in the 
comparison model.

 
(Proof idea: A comparison-

based search making k 
comparisons can only have 2k 
possible outcomes. There are 
n possible positions where the 

item could match.)



  Model 3: Queries have spatial locality. If a key is
queried, keys with nearby values will likely be queried.

Suppose our last search was for some 
key x₁. Our next search is for key x₂. We 

know where key x₁ is.
 

Let Δ = |rank(x₂) – rank(x₁)|.
 

Can we do the search in time O(Δ)?
How about time O(log Δ)?

How about time O(log log Δ)?

11 13 17 19 21 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89☞

Question: Can we 
do this efficiently if 
the underlying set 

is changing?



  Model 3: Queries have spatial locality. If a key is
queried, keys with nearby values will likely be queried.

11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71

11 – 13 17 – 19 23 – 29 31 – 37 41 – 43 47 – 53 59 – 61 67 – 71

11 – 19 23 – 37 41 – 53 59 – 71

11 – 37 41 – 71

11 – 71

Scan up, looking at 
sibling nodes to 

determine where 
to search from.



  Model 3: Queries have spatial locality. If a key is
queried, keys with nearby values will likely be queried.

11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71

11 – 13 17 – 19 23 – 29 31 – 37 41 – 43 47 – 53 59 – 61 67 – 71

11 – 19 23 – 37 41 – 53 59 – 71

11 – 37 41 – 71

11 – 71

Scan up, looking at 
sibling nodes to 

determine where 
to search from.

Claim: This simulates 
our earlier search. 

Runtime is O(log Δ).
☞



  Model 3: Queries have spatial locality. If a key is
queried, keys with nearby values will likely be queried.

11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71

11 – 13 17 – 19 23 – 29 31 – 37 41 – 43 47 – 53 59 – 61 67 – 71

11 – 19 23 – 37 41 – 53 59 – 71

11 – 37 41 – 71

11 – 71

Scan up, looking at 
sibling nodes to 

determine where 
to search from.

The level-linked
red/black tree 
implements this 

dynamically.
☞



  Model 3: Queries have spatial locality. If a key is
queried, keys with nearby values will likely be queried.

11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71

11 – 13 17 – 19 23 – 29 31 – 37 41 – 43 47 – 53 59 – 61 67 – 71

11 – 19 23 – 37 41 – 53 59 – 71

11 – 37 41 – 71

11 – 71

Scan up, looking at 
sibling nodes to 

determine where 
to search from.

Great exercise: Do 
this with skiplists in 

(expected) time
O(log Δ).

☞



  Model 3: Queries have spatial locality. If a key is
queried, keys with nearby values will likely be queried.

11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71

11 – 13 17 – 19 23 – 29 31 – 37 41 – 43 47 – 53 59 – 61 67 – 71

11 – 19 23 – 37 41 – 53 59 – 71

11 – 37 41 – 71

11 – 71

Scan up, looking at 
sibling nodes to 

determine where 
to search from.

A BST has the dynamic 
finger property if 

lookups take (amortized) 
time O(log Δ).

☞



  Model 4: Queries have temporal locality. If a key is
queried, it’s likely going to be queried again soon.

2

1 3

11

7 12

8

10

9

13

15

14

6

5

4



  Model 4: Queries have temporal locality. If a key is
queried, it’s likely going to be queried again soon.

10

14

15

9

11

12

4

2

1 3

6

5 7 13



  Model 4: Queries have temporal locality. If a key is
queried, it’s likely going to be queried again soon.

9

13

1

5

6

73

2 4

10

12

11

14

15

8

Goal: If only t 
elements are “hot” at a 
particular time, make 

accesses to those “hot” 
elements take time 

O(log t), not O(log n).



  Model 4: Queries have temporal locality. If a key is
queried, it’s likely going to be queried again soon.

9

13

1

5

6

73

2 4

10

12

11

14

15

8

Intuition: Any tree 
structure with a fixed 
shape is going to have 

a hard time making 
these queries fast.

 

Idea: What if we move 
elements around?



  Model 4: Queries have temporal locality. If a key is
queried, it’s likely going to be queried again soon.

“Hot” 
elements 
(recently 
accessed)

“Cold” 
elements 

(haven’t used 
in a while)

Intuition: Use a 
sequence of trees. 

Keep “hot” elements in 
the earlier trees.



  Model 4: Queries have temporal locality. If a key is
queried, it’s likely going to be queried again soon.

 

queried
element

To fill the gap left in the 
original tree, move the 
least-recently-accessed 
item from each tree into 
the next tree until the 

gap is filled.

least

recent

least

recent

To look up an element, 
search each tree in 

order of size until you 
find it.

Intuition: Use a 
sequence of trees. 

Keep “hot” elements in 
the earlier trees.

Then, remove it from 
the tree you found it in 
and insert it to the first 

tree.



  Model 4: Queries have temporal locality. If a key is
queried, it’s likely going to be queried again soon.

To insert an element, put it 
in the first tree. Then, 

repeatedly kick the oldest 
element out of each tree 

and into the next.

least

recent

least

recent

least

recent

                       added element

Intuition: Use a 
sequence of trees. 

Keep “hot” elements in 
the earlier trees.



  

Earlier trees should be 
small so “hot” items 
can be found quickly.

 

The cost of a lookup in 
a tree depends on the 

height of that tree.
 

Idea: Make each 
tree’s height double 
that of the previous 

tree.

Model 4: Queries have temporal locality. If a key is
queried, it’s likely going to be queried again soon.

Intuition: Use a 
sequence of trees. 

Keep “hot” elements in 
the earlier trees.



  

Idea: Each tree’s 
height is double that 
of the previous tree.

Tree heights:

20, 21, 22, 23, …,

Nodes per tree 
(roughly):

22⁰, 22¹, 22², 22³, …

Model 4: Queries have temporal locality. If a key is
queried, it’s likely going to be queried again soon.

22⁰ 22¹ 22² … 22lg lgn

Intuition: Use a 
sequence of trees. 

Keep “hot” elements in 
the earlier trees.



  Model 4: Queries have temporal locality. If a key is
queried, it’s likely going to be queried again soon.

22⁰ 22¹ 22² … 22lg lgn

 

Question: How much 
time does this take, as a 

function of n?

least

recent

least

recent

least

recent

Intuition: Use a 
sequence of trees. 

Keep “hot” elements in 
the earlier trees.

To insert an element, put 
it in the first tree. Then, 

repeatedly kick the 
oldest element out of 
each tree and into the 

next.

Answer at
https://pollev.com/cs166spr23

https://pollev.com/cs166spr23


  Model 4: Queries have temporal locality. If a key is
queried, it’s likely going to be queried again soon.

22⁰ 22¹ 22² … 22lg lgn

log220

+ ... + log22lg lgn

= 20 + 21 + ... + 2lg lg n

= 21+lg lgn − 1
= 2 lgn − 1
= O(logn)

least

recent

least

recent

least

recent

Intuition: Use a 
sequence of trees. 

Keep “hot” elements in 
the earlier trees.

To insert an element, put 
it in the first tree. Then, 

repeatedly kick the 
oldest element out of 
each tree and into the 

next.
 

Cost:



  Model 4: Queries have temporal locality. If a key is
queried, it’s likely going to be queried again soon.

22⁰ 22¹ 22² … 22lg lgn

Question: How long 
does it take to look up 

an element here?

Intuition: Use a 
sequence of trees. 

Keep “hot” elements in 
the earlier trees.

To look up an element, 
search each tree in 

order, move it to the first 
tree, then kick older 

elements back.
  

Elements are roughly 
sorted by access time.



  Model 4: Queries have temporal locality. If a key is
queried, it’s likely going to be queried again soon.

22⁰ 22¹ 22² … 22lg lgn

The cost of looking up an 
item x depends on how 
long it’s been since we 

last queried it.
 

Suppose that we have 
queried t total items 

since we last queried x.
 

Then x is in, at most, the 
(1 + lg lg t)th tree.

 

Cost of querying x: 
log220

+ ... + log22lg lg t

= O(logt)

Intuition: Use a 
sequence of trees. 

Keep “hot” elements in 
the earlier trees.



  Model 4: Queries have temporal locality. If a key is
queried, it’s likely going to be queried again soon.

22⁰ 22¹ 22² … 22lg lgn

A BST has the working 
set property if the 
(amortized) cost of 

looking up an element is 
O(log t), where t is the 
number of items looked 
up more recently than 
the queried element.

This data structure is 
called Iacono’s 

working set structure, 
after its inventor.

Intuition: Use a 
sequence of trees. 

Keep “hot” elements in 
the earlier trees.



  These models are in tension with one another.

Balance

Entropy

Dynamic
Finger

Working Set

Lookups take time
O(log n).

Lookups take expected
time O(1 + H).

Lookups take O(log Δ);
Δ is rank distance.

Lookups take O(log t);
t is recency.

Traditional
balanced BST

Weight-equalized
trees

Level-linked
BST with finger

Iacono’s
structure

Property Description Met by



  These models are in tension with one another.

Balance

Entropy

Dynamic
Finger

Working Set

Lookups take time
O(log n).

Lookups take expected
time O(1 + H).

Lookups take O(log Δ);
Δ is rank distance.

Lookups take O(log t);
t is recency.

Traditional
balanced BST

Weight-equalized
trees

Level-linked
BST with finger

Iacono’s
structure

Property Description Met by
All elements are

equally important!

No they aren’t! Some
get queried more!

And some are similar
to the last query!

And some were queried
more recently!



  These models are in tension with one another.

Balance

Entropy

Dynamic
Finger

Working Set

Lookups take time
O(log n).

Lookups take expected
time O(1 + H).

Lookups take O(log Δ);
Δ is rank distance.

Lookups take O(log t);
t is recency.

Traditional
balanced BST

Weight-equalized
trees

Level-linked
BST with finger

Iacono’s
structure

Property Description Met by

What if there are
correlations?

What if I do a linear
scan?

Lookups are sampled
from a fixed distribution.



  These models are in tension with one another.

Balance

Entropy

Dynamic
Finger

Working Set

Lookups take time
O(log n).

Lookups take expected
time O(1 + H).

Lookups take O(log Δ);
Δ is rank distance.

Lookups take O(log t);
t is recency.

Traditional
balanced BST

Weight-equalized
trees

Level-linked
BST with finger

Iacono’s
structure

Property Description Met by

Distance in time
is what’s important!

Distance in key space
is what’s important!



  Is there a single BST that
guarantees all of these properties?

Balance

Entropy

Dynamic
Finger

Working Set

Lookups take time
O(log n).

Lookups take expected
time O(1 + H).

Lookups take O(log Δ);
Δ is rank distance.

Lookups take O(log t);
t is recency.

Traditional
balanced BST

Weight-equalized
trees

Level-linked
BST with finger

Iacono’s
structure

Property Description Met by



  Yes!

Balance

Entropy

Dynamic
Finger

Working Set

Lookups take time
O(log n).

Lookups take expected
time O(1 + H).

Lookups take O(log Δ);
Δ is rank distance.

Lookups take O(log t);
t is recency.

Splay tree

Splay tree

Splay tree

Splay tree

Property Description Met by



  

Next Time
● Splay Trees

● A simple, fast, flexible BST.
● Splitting and Joining Trees

● Combining trees together, or breaking them apart.
● Sum-of-Logs Potentials

● Analyzing the efficiency of splay trees.
● The Dynamic Optimality Conjecture

● Is there a single best BST?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

