Assignment #4: Social Network Simulation
Due: 1:30pm on Friday, March 15th

Many thanks to Noah Arthurs for developing the concept and the initial version of the code for this assignment.

To better understand the dynamics of how information bubbles form and how political polarization can occur in social networks, this assignment provides a small scale simulation of a social network to investigate these phenomena. The simulation will allow you to visualize how choices with regard to trying to maximize revenue generated by user activities in the network may lead to a polarization of users. Through this investigation we want you to formulate a strategy for how a social network might make choices with regard to how it recommends content to users to achieve what you believe are the right outcomes for the social network and for society.

The starter project
Similar to your first technical assignment, the code we provide for this assignment is written in Java, making use of the ACM Java libraries used in CS106A. You will again be using Eclipse to run the code for this simulation. You should obtain the code for this simulation from the “Assignments” page of the CS181 website by downloading the file SocialNetworkSimulation.zip.

The assignment
As mentioned previously, your task in this assignment is to run a social network simulation to understand the dynamics of the network under different conditions (e.g., how recommendations are optimized in the system, different numbers of users in the network, etc). Note that it is possible to complete this assignment without having to modify any of the actual code for the simulation as the simulation allows for the setting of various critical parameters through its user interface. Still, we provide the code for the simulation to allow you to make changes if they help you, for example, gather more data for your write-ups, test ideas for suggestions on how you might address some of the issues encountered under different conditions in the network, etc.

Presently, we provide an explanation of what is happening in the social network simulation and how the results are visualized. Then, we will detail the specific work required for this assignment.

The simulation
In this simulation, we construct a social network, where each day users can read news articles from a set of news sources and then potentially have the articles they read show up in the news feeds of other users in the social network. The network will contain some number of “left-leaning” and some number of “right-leaning” users. The number of each type of user can be set in the user interface of the simulation when it is run (with up to a maximum of 30 of each type of
user1). We consider all users (regardless of political leaning) to be friends in the network, so news articles read by any user may potentially appear in the news feed of any other user.

News sources

There are 10 news sources in the simulation. The news sources are considered to be on a political spectrum from “right” to “left” with regard to the articles/content that they produce. Such a set-up is not unrealistic, as (for example) the website AllSides.com, which provides ratings of political leanings for news websites, provides a categorization of news sources as shown below:

![AllSides Top Online News Media Bias Ratings](image)

Note that throughout the rest of the assignment description, we will use the term “article” to refer to a piece of content that comes from a news source. As far as the simulation is concerned, the actual content of an article does not matter. Only the news source that an article came from matters with respect to, for example, if the article is read by a user or not. Thus, the term “article” is really synonymous with the news source that the given article is from.

1 Note that if you want to modify the maximum number of each type of user (which is not required for this assignment), the limits can be changed by setting the constants \texttt{MAX_LEFT_LEANING_USERS} and \texttt{MAX_RIGHT_LEANING_USERS} in the file \texttt{SimulationConstants.Java}. There are also several other constants (all of which are commented) in this file which can be changed, if you desire. But, again, it is not necessary to change any of these values to do this assignment. We just note it here in case you want to modify the simulation code.
Left-leaning and right-leaning users

Left-leaning and right-leaning users in the social network have different *true* probabilities of reading articles from across the set of 10 news sources. The *true* probability denotes the chance that when a user is *presented* with an article from a given news source, the user will actually *read* that article.

The true probabilities (rounded to two decimal places) for “left-leaning” users for reading the 10 news sources are as follows (i.e., starting at 70% and decreasing linearly to 30%):

<table>
<thead>
<tr>
<th>Source</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(read)</td>
<td>0.70</td>
<td>0.66</td>
<td>0.61</td>
<td>0.56</td>
<td>0.52</td>
<td>0.48</td>
<td>0.43</td>
<td>0.39</td>
<td>0.34</td>
<td>0.30</td>
</tr>
</tbody>
</table>

The true probabilities (rounded to two decimal places) for “right-leaning” users for reading the 10 news sources are as follows (i.e., starting at 30% and increasing linearly to 70%):

<table>
<thead>
<tr>
<th>Source</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(read)</td>
<td>0.30</td>
<td>0.34</td>
<td>0.39</td>
<td>0.43</td>
<td>0.48</td>
<td>0.52</td>
<td>0.56</td>
<td>0.61</td>
<td>0.66</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Model of individual users reading news

Each day in the simulation (the number of days the simulation lasts is a value that can be set through the user interface for the simulation), for each user, the social network select one article (i.e., news source) that is *presented* to the user. This simulates the case where the social network may, for example, email the user a link to one suggested article to consider reading. We then determine if the users reads this article or not, which is determined by the probability of the user reading an article from the news source that this article come from. In the simulation, the social network keeps track of the number of articles from each news source that are *presented* to each user as well as the number of articles from each news source that are *read* by each user.

Keeping track of the number of articles presented to and read by each user helps the social network determine an *estimate* of the probability (also referred to as the “affinity”) that a particular user will read an article presented from a particular news site. Recall that the social network doesn’t know each users *true* probabilities of reading articles from different news sources, so it must estimate this value from data in order to determine what the user is likely to read in the future. The social network models the probability that a user will read an article from a particular news source by simply computing the percentage of articles read by the user from that news source, given by the formula:

\[
\frac{\text{Number of articles read by the user from news source}}{\text{Number of articles presented to the user from news source}}
\]

Note that when the simulation starts, the social network assumes that every user has been presented with 2 articles from each news source and that 1 article from each news source was
read2. So, before we get any actual data, the social network simply estimates that a user has a 50\% chance of reading an article from any news source.

Selection of initial news article for each user (each day)

The selection of the article (i.e., news source) that the social network decides to present to a user each day can be made either by “exploring” the set of all news courses or “exploiting” the news source that the social network believes the user is mostly likely to read. The probability (a real value between 0 and 1) of choosing the “explore” option is set via the field called “Probability to explore for one user” in the user interface of the simulation.

If the “explore” option is selected, the social network selects an article (news source) randomly from among all the news sources, where the chance of picking a particular news source is weighted by the likelihood that we believe the user will read an article from that news source. For example, say the social network currently has the following estimates that a particular user will read an article from the different news sources:

<table>
<thead>
<tr>
<th>Source</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(read)</td>
<td>0.25</td>
<td>0.25</td>
<td>0.85</td>
<td>0.50</td>
<td>0.25</td>
<td>0.50</td>
<td>0.25</td>
<td>0.25</td>
<td>0.50</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Then, we would select one of the news sources with the following (proportional) probabilities (rounded to two decimal places):

<table>
<thead>
<tr>
<th>Source</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(select)</td>
<td>0.06</td>
<td>0.06</td>
<td>0.21</td>
<td>0.13</td>
<td>0.06</td>
<td>0.13</td>
<td>0.06</td>
<td>0.06</td>
<td>0.13</td>
<td>0.10</td>
</tr>
</tbody>
</table>

If the “exploit” option is selection (i.e., we did not select the “explore” option), then the social network simply selects the news source which has the highest estimated probability of being read by the user. For the example user given above, that would be news source 3.

Note that the decision to “explore” or “exploit” is made separately for each user on each day of the simulation.

Once an article is selected for a user, we then determine if the user reads that article or not (based on the user’s true probability of reading an article from that news source). Each article that is thus read many then potentially appear in the news feed of other users in the social network as reading the article causes it to be posted to the network by the user.

Simulating users’ news feeds in the social network

After determining which initial articles (news sources) are read by each user (and thus posted in the social network) on a particular day, we then determine which of these articles should appear in the news feeds of other users in the social network.

Each user in the network can see a maximum of 10 articles posted by friends in each day of the simulation. Recall that all users in the simulation are friends with each other. The choice of each of the articles that are shown to a particular user (referred to here as User X) can be made

2 The reader familiar with probability estimation might recognize this as a Laplace or Beta(1, 1) prior probability.
either by “exploring” or “exploiting” the \textit{affinity} between User X and other users in the social network.

The \textit{affinity} between User X and some other user (call them User Y) in the social network is simply the percentage of time that articles shared between User X and User Y are \textit{read} by the other user. In this simulation, we don’t distinguish if an article from User X is posted to User Y’s news feed, or vice versa. We simply keep track of the total number of articles that either were posted to User Y’s news feed from User X or were posted to User X’s news feed from User Y. Likewise, we also track the number of such posted articles that were read by the user to whose news feed they were posted to. The percentage of read articles (out of all posted articles) is the \textit{affinity} between User X and User Y (and, by symmetry, is the same as the affinity between User Y and User X).

The probability (a real value between 0 and 1) of choosing the “exploring” option (which is also a measure of the \textit{diversity} among users from which news feed posts are selected) is set via the field called \textit{“Probability of diversity among users”} in the user interface of the simulation. For each of the (up to 10) posts that may appear in User X’s news feed, we separately determine if the posting should be chosen via the “explore” or “exploit” option.

If the “explore” option is chosen for a posting, we select an article to include in the news feed for User X \textit{randomly} from among all articles initially read that day by other users in the network (which have not previously been posted in User X’s news feed). The random selection of this article is weighted by the affinity of User X with each other user in the network. In other words, the probability of picking an article to show from User Y to show in User X’s news feed is proportional to the affinity of User X with User Y. For example, say User X has five friends in the network that read an article at the beginning of the day and the affinity of User X with these five other users is (respectively):

<table>
<thead>
<tr>
<th>User</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affinity</td>
<td>0.6</td>
<td>0.4</td>
<td>0.7</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Then, we would select a posting from among the five users with respective probabilities:

<table>
<thead>
<tr>
<th>User</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affinity</td>
<td>0.3</td>
<td>0.2</td>
<td>0.35</td>
<td>0.1</td>
<td>0.05</td>
</tr>
</tbody>
</table>

If the “exploit” option is chosen for a posting, we select an article to include in the news feed for User X that comes from whichever user that has the highest affinity with User X (and hasn’t already been selected previously for a posting in User X’s news feed). So, in the example shown above, we would select the article from User 3 to post in User X’s news feed, since User 3 has the highest affinity with User X.

After determining the set of articles that are posted in the news feed for each user in the social network, we then determine which of these articles are read by each user, respectively. The chance of a user reading an article posted to their feed is determined by the true probability of the user reading an article from the news source of the article. We keep track of the number of articles that were posted to a user’s news feed from all other users in the network as well as
which of the articles were read in order to update the affinity values between every pair of users in the social network.

Visualizing the results of the simulation

When the simulation is run, the result of the simulation are displayed via a graph of the social network. The graph is animated to show it evolving over time in the simulation. The final graph displayed is the result after the simulation has completed. An example of such a graph is shown below:

![Visualizing the results of the simulation](image)

Each user in the social network is a vertex (small colored circle) in the graph. A vertex is color-coded either blue or red to indicate either a left-leaning or right-leaning user, respectively. Edges between nodes reflect the affinity between the pair of users connected by that edge. Edges are color-coded as follows:

- **Black** lines represent strong affinity (value > 0.6)
- **Magenta** lines represent medium affinity (value 0.45-0.6)
- **Yellow** lines represent weak affinity (value 0.4-0.45)
- No line between a pair of vertices indicates a very weak affinity (< 0.4)

The simulation also reports the total number of articles shown during the simulation (to all users), the total number of articles read during the simulation (by all users), the percentage of the articles shown that were read, and the total revenue generated by all the read articles. Note that the total revenue generated is simply the number of articles read multiplied by $0.05 (which is a stylized estimate of the monetization value for a user interacting with a piece of content (e.g., clicking on an ad or article) on the web).

Also, note that the results at the end of the simulation are printed in text to the Eclipse *console*. These results include a grid (matrix) of the affinity values between each pair of users in the social network as well as the total number of articles shown during the simulation, the total number of articles read during the simulation, the percentage of the articles shown that were read, and the total revenue generated by all the read articles. This text is printed both to make the results of the simulation more accessible to screen readers as well as provide text that can be easily copied/pasted for use in your write-up (discussed below).
What you need to do

You are employed at SocialNewsBook.net, an up-and-coming online social network that is focused on engaging users with news. The company is interested in how it might best engage its users in both the short and long-term. It has built a simulation of its social network (i.e., the simulation in this assignment) to allow you to determine how the users in the social network would behave in a variety of situations, controlled by various parameters that can be set through the user interface of the simulation. The code for the simulation is also provided to you just in case you’d like to look at the internals of the simulation or even modify the code to help you gather data, but you are under no obligation to do so. In other words, it’s fine for this assignment if you just use the simulator, modifying parameters through the user interface without actually changing any of the underlying code.

The executive staff of the company has tasked you with helping them determine how they should be recommending news articles to users in the network (both the initial article that is presented to each user each day as well as how articles are posted to users’ news feeds). More specifically, the executives want you to answer the questions below. You should write up the answer to these questions in a plain text file titled “Writeup” and include this file in the SocialNetworkSimulation Eclipse project folder before submitting it.

Questions to answer

1. Run the social network simulation with various numbers of left/right leaning users for 500 days with the “Probability to explore for one user” parameter set at 0.1 and the “Probability of diversity among users” parameter set at 0.1. In 100 words, explain what is happening in the network (both with respect to the network structure and other statistics reported for the simulation).

2. Run the social network simulation with various numbers of left/right leaning users for 500 days with “Probability to explore for one user” parameter set at 0.9 and “Probability of diversity among users” parameter set at 0.9. In 100 words, explain how and why the results in this case (both with respect to the structure of the network and the other statistics reported in the simulation) are different than the results from Question 1.

3. Consider the change in revenue generated by the social network simulation in Question 1 versus that in Question 2 (for the same number of left/right leaning user in both cases). In 200 words, explain what drives this revenue difference, especially with respect to what is happening in the social network simulation in Question 1 versus Question 2. Include an explanation of the dynamics in the social network. To answer this question you are encouraged to run the simulation with a variety of parameter values to give you a better sense of the dynamics in the network and the impact on revenue generation, and also give you more data to help you better explain/justify your answer.

4. Write a 500-700 word memo to the executive team of SocialNewsBook.net justifying how you believe they should make decisions with respect to how news articles should be
recommended to users in their social network. You can assume the executive team has a solid technical background—they all know how to code well and understand concepts from machine learning and recommender systems—and have done all the readings and attended all the classes in CS181, so they are familiar with both the technical and non-technical issues discussed in class.

The executive team is interested in both the short and long-term impacts of your recommendations for the company, its user base, and the relationship with news content providers (i.e., news sources) that it recommends articles from. Moreover, the executives are interested in public policy considerations of potential actions that they (or their competitors) might take. For example, what civic norms might such companies adhere to (and how should they be set), and if/how government regulators might react to potential actions taken by social networking companies such as SocialNewsBook.net.

Utilize data you obtain through running the simulation as well as concepts from the class readings (as well as external sources, if desired) to justify your position, including clearly specifying criteria for how you believe recommendations should be made in the social network. Your memo should specify how the company should make exploration/exploitation decisions when making recommendations (including, but not limited to, user polarization impacts), how the amount of revenue generated should impact these choices, and what other criteria, if any, beyond revenue generation should be considered and why. As mentioned previously, you may modify the code for the simulation if it helps you capture additional data for your memo, but you are under no obligation to do so.

As a side note (as was mentioned in class), we point out that the profit margin for many large successful leading online platforms is approximately 30%. Profit margins are much lower than that while the platforms are earlier in their lifecycle. Keep that in mind while discussing revenue implications in your memo.