s

CS193E
Lecture #3

Categories and Protocols
Cocoa Memory Management

Winter 2008, Dempsey/Marcos




Today’s Topics

* Questions from Assignment 1A or 1B?
 Categories

* Protocols

* Cocoa Memory Management

* Object life cycle

« Demo of Favorite Things |




Objective-C Files

h m

#import <Cocoa/Cocoa.h> #import "Person.h"

@interface Person:NSObject @implementation Person

{
NSString *name; - (void)printName {
int age; NSLog(name);
float weight; ks

- (float)ageToWeightRatio {

- (void)printName; return age/weight;

- (float)ageToWeightRatio; 1
@end @end




Objective-C Categories




Objective-C Categories

* Allows additional methods to be added to an existing class

« Common alternative to subclassing for small functional
additions

* Can be used to break a class up into multiple source files
 Can't add instance variables, just methods




Objective-C Categories

* Category name in parenthesis

/* Category on NSString */
@interface NSString (MailAddressUtilities)
- (NSString *)emailAddress;

- (NSString *)fullName;
@end

* At runtime, the new methods are part of the class
NSString *string = @“Derek (Clegg <dclegg@stanford.edu>”;

[addr emailAddress]; // returns “dclegg@stanford.edu”
[addr fullName]; // returns “Derek Clegg”




Objective-C Categories

@implementation NSString (MailAddressUtilities)

- (NSString *)emailAddress {
// Extract and return the email address

}

- (NSString *)fullName {
// Extract and return the full name

}




Protocols




Protocols

* Objective-C supports single inheritance
« Sometimes desired functionality cuts across class boundaries
* Protocols define only an interface, no implementation

* A class conforms to a protocol by implementing all of its
methods

* Almost identical to Java interfaces




Protocols define interface across classes

#1mport <Cocoa/Cocoa.h>

@protocol Drawing

// Only method declarations - no implementation
- (void)draw;

- (NSSize)maxSize;

- (NSS1ize)minSize;

@end




Classes declare conformance

@interface Shape : NSObject <Drawing>

{
NSRect shapeRect;

}

// implement all the methods of the Drawing protocol
- (void)draw;

- (NSS1ize)maxSize;

- (NSSize)minSize;

@end




Working with protocols

* Use angle brackets to declare conformance of a class
@interface Shape : NSObject <Drawing>

» List multiple protocols separated by commas
@interface NSColor : NSObject <NSCoding, NSCopying>

* Using protocols in variable and method declarations
1d <NSCopying> anObject;
MyObject <NSCopying> *obj;

- (void)saveCopyOfObject:(id <NSCopying>)obj;




Informal Protocols

« Sometimes a more informal arrangement is desired

* A collection of methods in a category
@interface NSObject (NSDraggingSource)

- (NSDragOperation)draggingSourceOperationMaskForLocal:
(BOOL)flag;
- (BOOL)1ignoreModifierKeysWhileDragging;
/* more... */
@end
* No requirement that all (or any!) be implemented

* No compile-time type checking




Memory Management




Memory Management

* In C you've got malloc/free
- Ownership is explicit
* In Java you've got garbage collection
- Objects simply go away when nobody is using them any more

* In Cocoa you've got reference counting
- |t's somewhere in the middle




malloc / free
Just Plain C

void *someMem = malloc(128);

free(someMem);




+alloc / -init
Allocate a new object with class method +alloc

Different -init methods for same class

Person *person = [[Person alloc] init];

[person release];




-COpPY

Copy an existing object

NSString *string; // assume this exists
NSString *string2 = [string copy];

[string2 release];




Accessing objects

* Allocating a new object: you need to release it
MyObject *obj = [[MyObj alloc] init];

 Copying an existing object: you need to release it
NSString *string
NSString *aCopy = [string copy];

* Everything else: not your responsibility by default
NSSet *set = [NSSet setWithObjects:objl, obj2, nil];




Everything else

How to hold on to an object?

NSString *title = [window title];




-retain
Hold onto an existing object

NSString *title = [window title];
[title retain];

[title release];




Reference Counting

* All objects have a “retain count”
If retain count > 0 object is alive

* When retain count goes to 0, object is deallocted
» alloc/copy/retain increments retain count

* release decrements retain count

* Balance every alloc/copy/retain with a release




Ref Count Example

—— Dog *myDog = [[Dog alloc] 1nit];

—— [myDog retain];

v —— [myDog retain];
) —— [myDog retain];
‘myDog shake];

Y 4 - ;myDog rgllOver];
N ' myDog giveTreat];

____[myDog release];
____[myDog release];
__[myDog release];
___ [myDog release];




Ref Count Example

Dog *yourDog = [myDog copy];

[myDog playNiceWith:yourDog];

. v/
[yourDog release]; ‘

[myDog release]; ¥
K4

¥y




Returned Objects

» What about objects returned by non-alloc and non-copy
methods?

* Don't release them, unless you retain them

* These returned objects are automatically released for you
- Sounds like memory management magic




Returned Objects

- (void)playFetch {
Dog *myDog = [self favoriteDog];

[self throwTennisBall];

 myDog fetchTennisBall];

‘myDog dropTennisBall];

 myDog dropTennisBall];

'myDog dropTennisBall];

[self pryTennisBallFromDogsMouth];

[myDog relfz04¢];
¥




Example method

+ (NSString *)stringWithString:(NSString *)str {

}




A problematic implementation

+ (NSString *)stringWithString:(NSString *)str {
return [[NSString alloc] initWithString:str];

}

Caller of the method would be responsible for releasing
the object!




Another problematic implementation

+ (NSString *)stringWithString:(NSString *)str {

NSString *newString =
[[NSString alloc] initWithString:str];

[newString releasel

return newString;

}

We are returning an object that we've already released!




We'd like something like this:

+ (NSString *)stringWithString:(NSString *)str {

NSString *newString =
[[NSString alloc] initWithString:str];

[newString
tossInABucketOfThingsThatWillGetSentReleaselater];

return newString;

}

This would let us fulfill our obligation to release the
object, but give the caller a chance to use and retain
the returned object.




Autorelease

+ (NSString *)stringWithString:(NSString *)str {

NSString *newString =
[[NSString alloc] initWithString:str];

[newString autorelease];

return newString;

}

An autorelease pool is the ‘bucket’




Autorelease

+ (NSString *)stringWithString:(NSString *)str {
return [[[NSString alloc] initWithString:str] autorelease];

}

Often used nested with other messages




Autoreleasing Objects

» “autorelease” means “release later”

* Allows you to return an object without making the caller worry
about ownership

* Main event loop has an “autorelease pool” around it

» Additional pools can be used for fine grained memory
management, e.g. in tight loops




Autorelease Example

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {

NSAutoreleasePool * pool =
[ [NSAutoreleasePool alloc] init];

NSString *string =
[NSString stringWithFormat:
@"The date 1s %@", [NSDate date]];

[pool release];
return 0;




Event loop pseudocode

NSEvent *event;

while (event = [NSApp nextEvent] ) {
// AppKit provides a pool for every event
NSAutoreleasePool * pool =
[ [NSAutoreleasePool alloc] init];
[NSApp handleEvent: event];

[pool release];
return 0;




Collections

* Collections retain objects when inserted and release them
when removed

* Dictionaries copy keys, but retain values
* All collections release values when they are deallocated

NSMutableArray *myArray // assume this exists

Thing myObj = [[Thing alloc] 1init];
[myArray addObject: myObj];
[myObj release];




Class implementations




Class Implementations

* -init method(s)
Often set up ivars (copy/retain)

* -dealloc method
Used to clean up ivars (release)

 “setter” accessor method
release the old, retain/copy the new

* “getter” accessor methods
Often will retain then autorelease




Writing an init method

* Override -[NSObject 1nit]
- (1d)init {
1f (self = [super 1init]) {
// do your 1initialization here

}

return self;

}

» Some classes have various flavors of init
- (1d)initWithName:(NSString *)value {
1f (self = [super 1init]) {
name = [value copy];

}

return self;

}




Writing an init method

 All variables are initialized to be zero

* Some classes have various flavors of init
- Check docs for “designated initializer”

- Subclasses should invoke superclasses designated initializer




Object Deallocation

* dealloc method called when object freed

* If your class retains objects as instance variables,
override dealloc to release them

- (void)dealloc {
// do your cleanup here
[name release];

[super dealloc];

h

* Compiler will warn if you forget to call [super
dealloc] in your override




Object Deallocation

* You never call dealloc directly!!!

* Deallocation is a one-way street, there’s no turning back once
dealloc is called

* Messages sent to dealloc’ed objects crash




Accessor Methods
Scalar values

(int)age {
return age;

(void)setAge:(1int)value {
age = value;




Accessor Methods
Object values

- (NSString *)name {
return [[name retain] autorelease];

h

- (void)setName:(NSString *)value {

1f (value !'= name) {
[name release];
name = [value copy]; // or retain

h
¥




Conventional Wisdom

* al loc/copy return retained objects

* All other methods don’t need special handling

* Any alloc/copy/retain calls must be balanced with a
release or autorelease call




Questions?




Favorite Things




Favorite Things Assignment

* Two assignments over two weeks

* Favorite Things 1 due Wed, January 23rd, 11:59 PM

» Small, single window application

* Explore on a small scale the big design patterns of Cocoa




Favorite Things Demo




Questions?




