
CS193E
Lecture 14

Cocoa Bindings

Agenda
• Questions?
• Personal Timeline IV
• Key Value Coding
• Key Value Observing
• Key Value Binding
• Cocoa Bindings

What are Cocoa Bindings?
• Added in Panther, more mature in Tiger
• Provide infrastructure to help implement MVC Controller “glue

code”
• Tight integration with Interface Builder

Example Glue Code
• In Draw, it’s all the code that updates and responds to the

inspector UI

• Posting of notifications when selection or properties change,
etc.

- (void)updateUI {
 [drawBorderCheckbox setState:[shape drawsBorder]];
 [fillCheckbox setState:[shape isFilled]];
 [drawBorderCheckbox setState:[shape drawsBorder]];
}

- (void)fillColorChanged:(NSColorWell *)sender {
 [shape setFillColor:[sender color]];
}

Glue Code
• Conceptually you’ve got UI elements that are associated with

properties in model objects
• All the code that:

■ keeps the UI elements up to date
■ pushes changes from the UI into the model objects

Glue Code

Model View

Controller

setColor:

se
tC
ol
or
:

co
lo
r
ch
an
ge
d

color changed

Controller

setColor:

se
tC
ol
or
:

co
lo
r
ch
an
ge
d

color changed

Removing the glue lets you focus on the view
and model, less code to maintain!

Bindings Fundamentals
• Leverages on a few underlying technologies
• Key Value Coding: generic mechanism for accessing properties

of objects by key
• Key Value Observing: generic mechanism for objects to know

when properties change
• Key Value Binding: generic mechanism for associating a

property of one object with a property of another object

Key Value Coding

Accessing properties using keys

Key Value Coding (KVC)
• Generic way for properties of objects to be accessed (by key)

• Instead of:
 [shape fillColor] and [shape setFillColor:color]

• One could do:
 [shape valueForKey:@”fillColor”] and
 [shape setValue:newColor forKey:@”fillColor”];

• Conceptually every object becomes a dictionary!

Properties

• KVC allows access to all object “properties”

• Properties are:

■ Attributes: Simple, immutable values like BOOLs, ints,
floats, strings… (scalar data types)

■ Relationships: references to other objects which have
properties of their own

■ to-one: single object (e.g. outlet in IB, NSWindow’s
contentView)

■ to-many: one or more objects (e.g. an array of objects,
NSView’s subviews)

Getting values via KVC
• Given a key, you get a value back (or nil)

 - (id)valueForKey:(NSString *)key

• Scalar types such as BOOL and int are “boxed” automatically in
NSNumbers

• Structs such as NSRect are boxed in NSValues.
• Example:

 NSColor *fillColor = [shape valueForKey:@”fillColor”];
 NSNumber *showBorder = [shape valueForKey:@”showBorder”];

Setting values via KVC
• Given a value, you set it on an object using

 - (void)setValue:(id)value forKey:(NSString *)key

• Scalar types such as BOOL and int are “unboxed” automatically
• Example:

 [shape setValue:[NSColor redColor] forKey:@”fillColor”];
 [shape setValue:[NSNumber numberWithBool:YES]
 forKey:@”showBorder”];

From Keys to Values

• NSObject’s implementation of valueForKey: will
■ Search for a public accessor method based on “key”. For

example, [shape valueForKey:@”fillColor”] will try to find [shape
fillColor] or [shape getFillColor]

■ Search for a private accessor method (with an underscore),
[shape _fillColor] or [shape _getFillColor]

■ Search for an instance variable based on “key”. For example,
_fillColor or fillColor

• If none of the above are found, exception is thrown

From Keys to Values

• Setting values works the same (mostly)
■ Search for a set<Key>: method,
[shape setValue:color forKey:@”fillColor”] will try to find [shape
setFillColor:color]

■ Try to find corresponding instance variable with name
_<key> or <key>. For example, _fillColor or fillColor.

• If none of the above are found, exception is thrown

To-many Relationships
• For immutable to-many relationships, can be accessed the

same way as attributes:
 NSArray *shapes = [canvas valueForKey:@”shapes”];

• For mutable to-many relationships you have to request them
differently:
 NSMutableArray *shapes;

 shapes = [canvas mutableArrayValueForKey:@”shapes”];
 [shapes addObject:newShape];

• Returns a “proxy” mutable array for an underlying mutable to-
many relationship

NSDictionary KVC
• NSDictionary has a custom implementation of KVC that

attempts to match keys against keys in the dictionary.
• Useful for doing rapid prototyping where you don’t have to

create custom classes or need extra custom logic
• For example, our canvas could probably just be a dictionary

with a “shapes” property

Key Paths

• Keys can be chained together to access nested object
properties

• For example, if document has a selectedShape property
we could get the fill color by doing:
 NSColor *color;
 color = [document valueForKeyPath:@”selectedShape.fillColor”];

• Equivalent to:
 color = [[document selectedShape] fillColor];

• Corresponding setter methods:
 [document setValue:color
 forKeyPath:@”selectedShape.fillColor”];

Pros and Cons
• Allows, dynamic, generic access to properties without even

caring what the class of an object is
• Loses all type specification because values are always typed (id)

■ Compiler can’t help with type checking
■ Compiler can’t guard against mistyped keys

• Sometimes can be a bit “too magic” and can be difficult to
debug
■ This is as close to operator overloading as ObjC gets!

Key Value Observing

Was that a tree that just fell?

Key Value Observing (KVO)
• Allows objects to express interest in knowing when a property

of an object changes
• Any time the underlying property is changed, all observers are

notified
• Similar (conceptually) to notifications, but more specific and

lightweight
■ Object to object, no “center” in the middle

• Like KVC, properties are identified by key
• Built into NSObject (all objects are observable!)

Observing Properties

• Object that wants to hear about changes calls:
 -(void)addObserver:(id)observer forKeyPath:(NSString *)keyPath
 options:(NSKeyValueObservingOptions)options
 context:(void *)context;

• Observer must then implement:
 - (void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(NSObject *)observedObject
 change:(NSDictionary *)change context:(void *)context;
which will be called any time the value changes

• For example, CanvasView might do:
 [document addObserver:self
 forKeyPath:@”selectedShape.fillColor”
 options:NULL context:NULL];
to hear about any changes to fillColor of selected shape

Observing Properties
• Like NSNotifications, make sure to unregister when you no

longer need to hear about changes:
 [document removeObserver:self
 forKeyPath:@”selectedShape.fillColor”];

• Failing to do this will lead to crashes!

What Do You Have To Do?

• You just write your regular setter method:
 - (void)setFillColor:(NSColor *)color {
 if (color != i_color) {
 [i_color release];
 i_color = [color retain];
 }
 }

• When this method is called directly or indirectly via KVC,
observers will be notified — but how?

• The ObjC runtime is automatically altered
• As soon as someone registers as an observer on a

shape’s fillColor attribute, the setFillColor method is
replaced with a “notifying” wrapper

So How Does It Work?

• Effectively your method is transformed from:

 - (void)setFillColor:(NSColor *)color {
 if (color != i_color) {
 [i_color release];
 i_color = [color retain];
 }
 }

to this:

 - (void)setFillColor:(NSColor *)color {
 [self willChangeValueForKey:@”fillColor”];
 if (color != i_color) {
 [i_color release];
 i_color = [color retain];
 }
 [self didChangeValueForKey:@”fillColor”];
 }

Major Caveat
• In order for KVO to work reliably, all access to properties must

be done using “KVC Compliant” means
• Changing values out from underneath KVC lets observers get

out of sync which is bad (ie, leads to exceptions and/or crashes)
• Fortunately you can adopt KVC incrementally so it’s not as bad

as it sounds
• Can be difficult to debug

Key Value Binding

The glue that binds it all together

• Ties together KVC and KVO
• Allows a property of one object to be bound to the property of

another object
• You can think of it as an alternative to “outlets” and “actions” for

connecting objects
■ But it’s much, much more!

• Easily configured in IB using the Bindings Inspector
■ Can also be configured programmatically

Key Value Binding (KVB)

Finding the Selection
• The trouble in the inspector is how to identify, by a key or key

path, the selected node
• The inspector should inspect what’s selected in the main

window
• The application keeps track of the main window
• Selected node is owned by the document
• The main window can access the document through its

window controller
• Is this enough to fish out the selected node?

Finding the Selection
• Starting from the global shared application, NSApp, we can

find the selected node of the document displayed in the main
window

• Key path looks something like this:

• Since the shared application object is available in any nib, we
can bind UI to the document’s selectedNode!

mainWindow.windowController.document.selectedNode

[[[[NSApp mainWindow] windowController] document] selectedNode]

KVO and Key Paths
• When using KVO with a key path, the observer gets notified

when any component of the key path changes
■ Provided the change is done in a KVC compliant manner
■ This is the most common problem that trips people up with

KVO!

• This is very powerful!

mainWindow.windowController.document.selectedNode

Any time the main window changes, inspector will update

Recap

• Key Value Coding
■ Get/set properties using keys or key paths

• Key Value Observing
■ Notifications about changes to keys or key paths

• Bindings
■ Alternative to IB outlets and actions
■ Uses KVC to get/set values, and KVO to know when to

update

Intersted?
• Bindings can save a significant amount of code
• There’s definitely a learning curve to using them
• They can be frustrating to debug
• Can you use them in your final project?

■ Maybe, but we want to approve any usage first to make sure
that it’s an appropriate use and that it won’t cause more
headaches than it’s worth

Questions?

