
CS193j, Stanford Handout #5
Winter, 2002-03 Nick Parlante

Java 3

Java Features
Inheritance -- ignore for now
OOP languages have an important feature called "inheritance" where a class can

be declared as a "subclass" of another class, known as the superclass.
In that case, the subclass inherits the features of the superclass. This is a tidy way

to give the subclass features from its superclass -- a form of code sharing.
This is an important feature in some cases, but we will cover it a little later.
By default in Java, classes have the superclass "Object" -- this means that all

classes inherit the methods defined in the Object class.

Java Primitives
Java has "primitive" types, much like C. Unlike C, the sizes of the primitives are

fixed and do not vary from one platform to another, and there are no unsigned
variants.

boolean -- true of false
byte -- 1 byte
char -- 2 bytes (unicode)
int -- 4 bytes
long -- 8 bytes
float -- 4 bytes
double - 8 bytes

Primitives can be used for local variables, parameters, and ivars.
Local variables are allocated on the runtime stack when the code runs, just as in

C.. At runtime, primitives are simple and work fast.
Primitives may be allocated inside objects or arrays, however, it is not possible to

get a pointer to a primitive itself (there is no & operator). Pointers only work for
objects and arrays in the heap -- this makes pointers much simpler in Java than
in C or C++.

Java is divided into two worlds: primitives work in simple ways and there are no
pointers, while objects and arrays only work through pointers. The two worlds
are separate, and the boundary between the two can be a little awkward.

There are "wrapper" classes Integer, Boolean, Float, Double.... that can hold a
single primitive value. These classes are "immutable", they cannot be changed
once constructed. They can finesse, to some extent, the situation where you
have a primitive value, but need a pointer to it. Use intValue() to get the int
value out of an Integer object.

Use the static method Integer.parseInt(String) -> int to parse a String to an int
Use the static method Integer.toString(int) -> String to make a String out of an int

2

Arrays
Java has a nice array functionality built in to the language.
An array is declared according to the type of element -- an int[] array holds ints,

and a Student[] array holds Student objects.
Arrays are always allocated in the heap with the "new" operator and accessed

through pointers (like objects)
An array may be allocated to be any size, although it may not change size after it

is allocated (i.e. there is no equivalent to the C realloc() call).
Array Declaration

int[] a; -- a can point to an array of ints (the array itself is not yet allocated)
int a[]; -- alternate syntax for C refugees -- do not use!
Student[] b; -- b can point to an array of Student objects. Actually, the array

will hold pointers to Student objects.
a = new int[100];

Allocate the array in the heap with the given size
Like allocating a new object
The array elements are all zeroed out when allocated.
The requested array length does not need to be a constant -- it could be an

expression like new int[2*i +100];
Array element access

Elements are accessed 0..len-1, just like C and C++
Java detects array-out--of-bounds access at runtime
a[0] = 1; -- first element
a[99] = 2; -- last element
a[-1] = 3; -- runtime array bounds exception

a.length -- returns the length of the array (read-only)
Arrays know their length -- cool!
NOT a.length()

Arrays have compile-time types
a[0] = "a string"; // NO -- int and String don't match
At compile time, arrays know their element type and detect type mismatches

such as above
The other Java collections, such as ArrayList, do not have this compile time

type system error catching, although it is rumored that compile time types
are being added for Java 1.5

Student[] b = new Student[100];
Allocates an array of 100 Student pointers (initially all null)
Does not allocate any Student objects -- that's a separate pass

Int Array Code
Here is some typical looking int array code -- allocate an array and fill it with

square numbers: 1, 4, 9, ...
(also, notice that the "int i" can be declared right in the for loop -- cute.)
{

int[] squares;
squares = new int[100]; // allocate the array in the heap

for (int i=0; i<squares.length; i++) { // iterate over the array
squares[i] = (i+1) * (i+1);

3

}
}

Student Array Code
Here's some typical looking code that allocates an array of 100 Student objects
{

Student[] students;

students = new Student[100]; // 1. allocate the array

// 2. allocate 100 students, and store their pointers in the array
for (int i=0; i<students.length; i++) {

students[i] = new Student();
}

}

Array Literal
There's a syntax to specify an array and its contents as part of an array variable

declaration.
This is called an "array constant" or an "array literal".

String[] words = { "hello", "foo", "bar" };
int[] squares = { 1, 4, 9, 16 };

// in this case, we call new to create objects in the array
Student[] students = { new Student(12), new Student(15) };

Anonymous array
Alternately, you can create outside of a variable declaration like this... .

... new String[] { "foo", "bar", "baz"} ...

Array Utilities
Java has a few utility functions to help with arrays...
There is a method in the System class, System.arraycopy(), that will copy a

section of elements form one array to another. This is likely faster than writing
the equivalent for-loop yourself.

System.arraycopy(source array, source index, dest array, dest index, length);
Arrays Class

The Arrays class contains many convenience methods that work on arrays --
filling, searching, sorting, etc.

Multidimensional Arrays
An array with more dimensions is allocated like this...

int[][] big = new int[100][100]; // allocate a 100x100 array
big[0][1] = 10;// refer to (0,1) element

Unlike C, a 2-d java array is not allocated as a single block of memory. Instead, it
is implemented as a 1-d array of pointers to 1-d arrays.

4

String
Java has a great built-in String class. See the String class docs to see the many

operations it supports.
Strings (and char) use 2-byte unicode characters -- work with Kanji, Russian, etc.
String objects use the "immutable" design style

Never change once created
i.e. there is no append() or reverse() method that changes the string state
To represent a different string state, create a new string with the different

state
The immutable style, has an appealing simplicity to it -- easy for clients to

understand.
The immutable style happens to avoid many complexities when dealing with

(a) multiple pointers sharing one object, and (b) multiple threads sharing
one object.

On the other hand, the immutable style can cause the program to work
through a lot of memory over time which can be expensive.

String constants
Double quotes (") build String objects
"Hello World!\n" -- builds a String object with the given chars and returns a

pointer to it
The expression new String("hello") is a little silly, can just say "hello".
Use single quotes for a char 'a', 'B', '\n'

System.out.print("print out a string"); // or use println() to include the endline
String + String

+ concats strings together -- creates a new String based on the other two
String a = "foo";
String b = a + "bar"; // b is now "foobar"

toString()
Many objects support a toString() method that creates some sort of String

version of the object -- handy for debugging. print(), printLn(), and + will
use the toString() of any object passed in. The toString() method is defined
up in the Object class, so that's why all classes respond to it. (More on this
when we talk about inheritance.)

String Methods
Here are some of the representative methods implemented in the String class
Look in the String class docs for the many messages it responds to

int length() -- number of chars
char charAt(int index) -- char at given 0-based index
int indexOf(char c) -- first occurrence of char, or -1
int indexOf(String s)
boolean equals(Object) -- test if two strings have the same characters
boolean equalsIgnoreCase(Object) -- as above, but ignoring case
String toLowerCase() -- return a new String, lowercase
String substring(int begin, int end) -- return a new String made of the

begin..end-1 substring from the original

5

Typical String Code
{

String a = "hello"; // allocate 2 String objects
String b = "there";
String c = a; // point to same String as a -- fine

int len = a.length(); // 5
String d = a + " " + b; // "hello there"

int find = d.indexOf("there"); // find: 6

String sub = d.substring(6, 11); // extract: "there"

sub == b; // false (== compares pointers)
sub.equals(b); // true (a "deep" comparison)

}

StringBuffer
StringBuffer is similar to String, but can change the chars over time. More

efficient to change one StringBuffer over time, than to create 20 slightly
different String objects over time.

{
StringBuffer buff = new StringBuffer();
for (int i=0; i<100; i++) {

buff.append(<some thing>); // efficient append
}
String result = buff.toString(); // make a String once done with appending

}

System.out
System.out is a static object in the System class that represents standard output. It

responds to the messages...
println(String) -- print the given string on a line (using the end-line character

of the local operating system),
print(String) -- as above, but without and end-line

Example
System.out.println("hello"); -- prints to standard out

== vs equals()
== -- compare primitives or pointers
boolean equals(Object other)

There is a default definition in the Object superclass that just does an ==
compare of (this == other), so it's just like using == directly.

However, classes such as String, override equals() to provide "deep" byte-by-
byte compare version. See the docs for a particular class to see if it overrides
equals(). Most classes do not.

String Example
String a = new String("hello"); // in reality, just write this as "hello"
String a2 = new String("hello");

6

a == a2 // false
a.equals(a2) // true

Foo Example
Foo a = new Foo("a");
Foo a2 = new Foo("a");
a == a2 // false
a.equals(a2) // ??? -- depends on Foo overriding equals()

Garbage Collector GC
String a = new String("a");
String b = new String("b");
a = a + b; // a now points to "ab"
Where did the original a go?

It's still sitting in the heap, but it is "unreferenced" or "garbage" since there are
no pointers to it. The GC thread comes through at some time and reclaims
garbage memory.

GC slows Java code down a little, but eliminates all those &/malloc()/free()
bugs. The GC algorithm is very sophisticated.

Stack vs. Heap
Remember, stack memory (where locals are allocated for a method call), is

much faster than heap memory for allocation and deallocation.
Destructor

In C++, the "destructor" is an explicit notification that the object is about to be
destroyed.

In Java, the "finalizer" is like a destructor -- it runs when an object is about to
be GC'd. However, when or even if the finalizer runs is very random
because of the odd scheduling of the GC. Because the timing of the finalizer
is imprecise, depending on them can make the whole program behavior a
little unpredictable. Therefore, I recommend not using finalizers if at all
possible.

Declare Vars As You Go Style
In Java, it's possible to declare new local variables on any line.
This is a handy way to name and store values as you go through a computation...
public int method(Foo foo) {

int a = foo.getA();
int b = foo.getB();
int sum = a + b;
int diff = Math.abs(a - b);
if (diff > sum) {

int prod = a * b;
for (int i = 0; i<a; i++) {

...
}

}

7

Static
Ivars or methods in a class may be declared "static".
Regular ivars and methods are associated with objects of the class.
Static variables and methods are not associated with an object of the class.

Instead, they are associated with the class itself.

Static variable
A static variable is like a global variable, except it exists inside of a class.
There is a single copy of the static variable inside the class. In contrast, regular

ivars such as "units" exist many times -- once for each object of the class.
Static variables are rare compared to ordinary ivars.
The name of a static variable starts with the name of its class -- so a static variable

named "count" in the Student class would be referred to as "Student.count".
Output Example

"System.out" is a static variable in the System class that represents standard
output.

Monster Example
Suppose you are implementing the game Doom. You have a Monster class

that represents the monsters that run around in the game. Each monster
object needs access to a Sound object that holds the sound "roar.mp3". so the
monster can play that sound at the right moment. With a regular ivar, each
monster would have their own copy of the variable. Instead, the Monster
class contains a static Sound variable, and all the monster objects share that
one variable.

Static method
A static method is like a function that is defined inside a class.
A static method does not execute against a receiver. Instead, it is like a plain C

function -- takes arguments, but there is no receiver.
The full name of a static method begins with the name of its class, so a static foo()

method in the Student class is called Student.foo().
The Math class contains the common math functions, such as sin(), cos(), etc..

These are defined as static methods in the Math class. Their full names are
Math.sin(), Math.cos(), ...

The System.arraycopy() method is another example of a static method. The static
method does not have a receiver that it executes against. Instead, we call it like
a regular function, and pass it the arguments to work on.

A "static int getCount()" method in the Student class is invoked as
Student.getCount();

In contrast, a regular method would be invoked with a message send to a
receiver like s.getStress(); where s points to a Student object.

The method "static void main(String[] args)" is special. To run a java program,
you specify the name of a class. The system then starts the program by running

8

the static main() function in that class, and the String[] array represents the
command-line arguments.

Call a static method like this: Student.foo(), NOT s.foo(); where s points to a
Student.

s.foo() actually compiles, but it discards s as a receiver and translates to the
same thing as Student.foo() using the compile-time type of the receiver
variable. The s.foo() syntax is misleading, since it makes it look like a
regular message send.

static method/var example
Suppose we modify the Student example so it has a static variable and a static

method.
-Add a "static int count;" variable that counts the number of Student objects

constructed -- increment it in the Student ctor. Both static and regular methods
can see the static count variable. There is one copy of the count variable, shared
by all the Student objects.

-Add a static method getCount() that returns the current value of count.

public class Student {
private int units;

// Define a static int counter
private static int count = 0;

public Student(int init_units) {
units = init_units;

// Increment the counter
count++;

}

public static int getCount() {
// Clients invoke this method as Student.getCount();
// Does not execute against a receiver, so
// there is no "units" to refer to here
return(count);

}

// rest of the Student class
...

}

Typical static method error
Suppose in the static getCount() method, we tried to refer to a "units" variable...

public static int getCount() {
units = units + 1; // error

}
This gives an error message -- it cannot compile the "units" expression because

there is no receiver with ivars in it. The "static" and the "units" are contradictory
-- something is wrong with the design of this method.

Static vars, such as count, are available in both static and regular methods.
However, ivars like "units" only work in regular methods that have a receiver.

