STANFORD UNIVERSILY

CS193J: Programming in Java
Winter Quarter 2003

MVC/JTable, Exceptions and Files

Manu Kumar
sneaker@stanford.edu

* Last Time:

— Threading continued (wait/notify)
* Today:

— CS193J Tips and Tricks

- MVC

* Model View Controller paradigm
» JTable

— Exceptions
— Files and Streams

STANFORD UNIVERSILY

* 4 Handouts for today!
— #23: Homework #3 Part B
—#24: MVVC/Tables
— #25: Exceptions
— #26: Files and Streams

« Homework #3 (Part a and b) tips

— This homework is not short

— Start early

« Threading/Concurrency bugs are the hardest bugs
you will ever encounter!

STANFORD UNIVERSILY

While we're talking about tips...

« Some random tips to help you
— Syntax highlighting in emacs

* If you use emacs in an X environment, you can turn on
syntax highlighting under the Options menu

— VNC is your friend
* Leland has the VNC Server installed on it already!
* Download and installed VNC Client from
http://www.realvnc.com
— System.out.printin() is your life-saver!

 When debugging, always create utility methods to dump your
object state and use System.out.printin() to be able to view it

 When using Threads —output the thread name
(Thread.getName() method) so that you know which thread is
active

http://www.realvnc.com/

STANFORD UNIVERSILY

Homework #3 Part b intuition

« How many of you have not used
Napster/Kazaa/Bearshare! ©

— The interface HW3 presents for checking links is reminiscent of
how P2P filesharing clients download files.

[T inktester=———————— M| H
Start URL: | Max threads
* | Link [Type | Status Do nlpaded | Time | Throughput | Progress
0 http:d feww stanford edudclass fos1 93 (textAhiml Done 1395 0f 1395 ytes 3T37 ms 373 bytesifsec 100% done
1| http:/ Aeww stanford.edus text/html Reading 61ddof 777 bytes S67d ms 708 bytesssec |Indeterminate
2 http:/ A stanford eduselass fos 1935, (text himl Done 1922 0f 1922 ytes 2674 ms 718 bytesissec 100% done
3| page1.html text/html Done 641 of 641 bytes 1639 ms 391 bytesissec 100% done
4| fclassfes1 087 text/html Done 13250f 1325 ytes 2175 ms 609 bytes/sec 100% done
5|images/ text S html Done 19100f 1910 ites 5229 ms 365 bvtesdsec 100% done
&|gopher://dendrome. ucdavis.edus text S html Done 1763 0f 1763 ptes 5336 m3 330 btesdzec 100% done
7 http: S Awwew stanford edudclassfes193 . lapplication... Reading A07Z of 16539 ites 5654 ms 543 bwtesSzec 15% done
S| http: S Awwew stanford.edusclassfies193 . (texthiml Reading 1024 0f 777 iptes 1292 ms 792 bvtesdsec | Indeter minate
Q| ftp: S fMpstanford.eduselassfes1 93] Aa. . Connecting
10| http:/ Awww stanford edusclassfes193.
11 | file:fusrfeclassfes1 93] MW fannou.
[

STANFORD UNIVERSILY

 MVC paradigm
— Model
« Data storage, no presentation elements
— View
» No data storage, presentation elements
— Controller
* Glue to tie the Model and the view together
* Motivation

— Provides for a good way to partition work and create a
modular design

— Very flexible paradigm for providing multiple ways to
look at the same information

sSun’s MVC Pattern Diagram

Model

« Encapsulates application state
» Hespands to state queries

* EXpases application
functionality

State » Notifies views cf changes State
Query Change

Change
Nolification

View View Saloction Controller

« Renders tha madels « Defines application behavior

* Bequests updates from modals » Maps Usar actiorss {o

»Sends user gestures tocontroller 11 1 1 1 1 | model Upoares

i i i
+ Allows controller fo selact view User Gestures oelects view for responss
« One for each functionality

Method Invocations
Events

Stolen from a presentation by DChen @ Sun

 Tables are one of the more involved Ul
elements in Swing

— Basic functionality however it easy
— Learn by pattern matching!

« Resources:

— Handout has lots of sample code

» Source for the code in the handout is available in
electronic form on the course website

— Sun’s Java Tutorial on How to Use Tables

* http://java.sun.com/docs/books/tutorial/uiswing/co
mponents/table.html

« Use MVC pattern!
— Model: TableModel
— View: JTable
— Controller: Ul elements and listener bindings

JTable

— Relies on a TableModel for storage
— Has lots of features to display tabular data

TableModel Interface

— getValueAt(), setValueAt(), getRowCount(),
getColumnCount() etc.

TableModelListener Interface
— tableChanged(TableModelEvent e)

* Implements common functionality for
TableModel Interface

— But it is abstract, so you must extend it
» getRowCount(), getColumnCount(), getValueAt()

— Helper methods for things not directly related
to storage

- addTableModelListener(), fire _ Changed()

 DefaultTableModel

— Extends AbstractModel, but uses a Vector
implementation

* Provided by Nick

— Uses ArrayList implementation
— getValueAt() to access data

— setValueAt() to change data

* Notifies of changes by sending fireTable ()
methods

— Handles listeners

* This is what you should follow!

STANFORD UNIVERSITY

Live Example!

& TableFrame =
Mame | Faworite Thing Add Row |

Barnesy Saving please and thank yau

Tinky Winky Playing with my purse Add Column |

Dr. Ross Mot Being on TV Delete Row |

Ak D, U] Load File |

Ma e | Faworite Thing

Barney Saving please and thank you

Tinky Winky Playing with my purse

Dr. Ross Mot Beingon T¥

Elvis

Vﬁ‘ STANFORD UNIVERSITY

2]

 Putthe JTable in a JScrollPane

— This automatically deals with handling space for the
header and does the right things!

* To change column widths

TableColumn column = null;
for (inti=0;i<5;i++){
column = table.getColumnModel().getColumn(i);
if (i ==2){
column.setPreferredWidth(100); //second column is bigger
} else {
column.setPreferredWidth(50);

}
}

STANFORD UNIVERSILY

Exceptions

* You've seen these already!

— S0 you already have some intuition about
these

* Exceptions
— Are for handling errors

— Example:
 ArraylndexOutOfBoundsException
* NullPointerExeption
» CloneNotSupportedException

* Programming has two main tasks
— Do the main computation or task at hand

— Handle exceptional (rare) failure conditions that may
arise

 Bulletproofing

— Term used to make sure your program can handle all
kinds of error conditions

« Warning

— Since error handling code is not executed very often,
it is likely that it will have lots of errors in it!

STANFORD UNIVERSILY

E
@ AN Traditional Approach to Error Handling

* Main computation and error handling code
are mixed together
int error = foo(a, &b)
If (error=0){....}
* Problems
— Spaghetti code — less readable

— Error codes, values have to be manually
passed back to calling methods so that the
top level caller can do something graceful

— Compiler does not provide any support for
error handling

STANFORD UNIVERSILY

@ M The Java Way: Exceptions

* Formalize and separate error handling
fromm main code in a structured way

— Compiler is aware of these “exceptions”

— Easier to read since it is possible to look at
main code, and look at error cases

— Possible to pass errors gracefully up the
calling hierarchy to be handled at the
appropriate level

STANFORD UNIVERSILY

Exception Classes

 Throwable
— Superclass for all exceptions

« Two main types of exceptions

— Exception

» This is something the caller/programmer should know about
and handle

 Must be declared in a throws clause
— RuntimeException
» Subclass of exception

 Does not need to be declated in a throws clause

» Usually reserved for things which the caller cannot do
anything and therefore also usually fatal.

STANFORD UNIVERSILY

Exception Subclasses

* Exceptions are organized in a hierarchy
— Subclasses are most specific
— Higher level exceptions are less specific

* You can create your own subclasses of

exceptions which are application specific
— Rule of thumb: if your client code will need to
distinguish a particular error and do

something special, create a new exception
subclass, otherwise, just use existing classes.

STANFORD UNIVERSILY

Methods with Exceptions

* Exception throw

— throw can be used to signal an exception at
runtime

 Method throws

— When a method does something that can
result in an error, it should declare throws in

the method declaration
public void fileRead(String f) throws IOException {

}

STANFORD UNIVERSILY

“Handling” Exceptions

* Two possible options

— Pass-the-buck-approach
» Declare the exception in a throws

» This passes the exception along to the caller to
handle

— Do-Something-approach

« Use try-catch block to test if an exception can
happen and then so something useful

* Which one to use:
— Depends on the application!

 |dea:
— “try” to do something
— If it fails “catch” the exception
— Do something appropriate to deal with the error

 Note:

— A try may have multiple catches!

» Depending upon the different types of exceptions that can be
thrown by all the statements inside a try block

— Exceptions are tested in the same order as the catch
blocks

* Important when dealing with exceptions that have a
superclass-subclass relationship

STANFORD UNIVERSILY

try / catch example

public void fileRead(String fname) { /I NOTE no throws

try {
I this is the standard way to read a text file...

FileReader reader = new FileReader(new File(fname));
BufferedReader in = new BufferedReader(reader);

String line;
while ((line = in.readLine()) != null) {

Il readLine() etc. can fail in various ways with
I/l an IOException }
}
/I Control jumps to the catch clause on an exception
catch (IOException e) {
I/l a simple handling strategy -- see below for better strategies
e.printStackTrace();

STANFORD UNIVERSILY

@m. "X printStackTrace() is your friend!

* When dealing with exceptions
» Especially when debugging

 printStackTrace() will:
— Show you the full calling history
— With line numbers
* Note:
— Bad idea to eat an exception silently!

— Either printStackTrace() or pass it along to be
handled at a different level

Vﬁ‘ STANFORD UNIVERSITY
PR T, .
Files and Streams

T
s
i f = B -'.-'-:?h. ""':":-_:'Il r
z i,
i ! = (=t

* File
— Represents a file or directory

— Java abstracts away the ugliness of dealing
with files quite nicely

e Streams

— Way to deal with input and output
— A useful abstraction...

STANFORD UNIVERSILY

Streams!??

« Water analogy
— Think of streams as pipes for water

— Do you know whether the water that comes out of
your tap is coming from a) the ocean b) some river c)
a water tank d) a water buffalo?

e |dea:

— You abstract away what the stream is connected to
and perform all your I/O operations on the stream

— The stream may be connected to a file on a floppy, a
file on a hard disk, a network connection or may even
just be in memory!

Vﬁ‘ STANFORD UNIVERSITY
[_
Hierarchy of Streams

<
s
: fﬂh . ___--_:?h ._i_:..:_:.
i,
PR b =L

« Java provides a hierarchy of streams

— Think of this as different “filters” you can add on to
your water pipe
« Some may compress/decompress data
« Some may provide buffers

e Common Use Scenario

— Streams are used by layering them together to form
the type of “pipe” we eventually want

icl'ient code| read() requests
\ -

[Buf f er edReader |—|&ZI PI nput Strean|—|Fi el nput Strean]—T—[f1

-

dat a

STANFORD UNIVERSILY

Types of Streams

InputStream / OutputStream
— Base class streams with few features
— read() and write()

* FilelnputStream / FileOutputStream

— Specifically for connecting to files

« ByteArraylnputStream / ByteArrayOutputStream

— Use an in-memory array of bytes for storage!

« BufferedlnputStream / BufferedOutputStream
— Improve performance by adding buffers
— Should almost always use buffers

 BufferedReader / BufferedWriter

— Convert bytes to unicode Char and String data
— Probably most useful for what we need

* When a thread sends a read() to a stream,
If the data is not ready, the thread blocks
in the call to read(). When the data is
there, the thread unblocks and the call to
read() returns

* The reading/writing code does not need to
do anything special

 Read 10 things at once — create 10
threads!

STANFORD UNIVERSILY

Reading Example

public void readLines(String fname) {
try {
I/l Build a reader on the fname, (also works with File object)

BufferedReader in = new BufferedReader(new
FileReader(fname));

String line;

while ((line = in.readLine()) != null) {
I/l do something with 'line’
System.out.printin(line);

}

in.close(); Il polite

}
catch (IOException e) {

e.printStackTrace();

}
}

STANFORD UNIVERSILY

public void writeLines(String fname) {

try {
I/l Build a writer on the fname (also works on File objects)

BufferedWriter out = new BufferedWriter(new FileWriter(fname));

Il Send out.print(), out.printin() to write chars
for (int i=0; i<data.size(); i++) {

out.printin(... ith data string ...);
}

out.close(); Il polite

}
catch (IOException e) {

e.printStackTrace();
}

}

« Java has build-in and very elegant support
for HTTP

« Code on the handout is what you will need
for HW #3 Part b!

« URL

— Uniform Resource Location
* http://cs193|.stanford.edu

« URLConnection

— To open a network connection to a URL and
be able to get a stream from it to read data!

http://cs193j.stanford.edu/

STANFORD UNIVERSILY

HTTP Example

« public static void dumpURL(String urlString) {

. try {

. URL url = new URL(urlString);

. URLConnection conn = url.openConnection();
. InputStream stream = conn.getlnputStream();
. BufferedReader in = new BufferedReader(new

InputStreamReader(stream));

. String line;

. while ((line = in.readLine()) != null) {
. System.out.printin(line);
. }

. in.close();

. }

. catch (MalformedURLEXxception e) {

. e.printStackTrace();

. }

. catch (IOException e) {

. e.printStackTrace();

. }

° }

* Today
— Tips and Tricks
— MVC / Tables
— Exceptions
— Files and Streams

« Homework #3 Part b handed out!

	CS193J: Programming in JavaWinter Quarter 2003MVC/JTable, Exceptions and Files
	Agenda
	Handouts
	While we’re talking about tips…
	Homework #3 Part b intuition
	MVC
	Rudimentary MVC diagram
	Sun’s MVC Pattern Diagram
	Tables in Swing
	Tables in Swing
	AbstractTableModel
	BasicTableModel
	Live Example!
	Table Tips!
	Exceptions
	Error-Handling
	Traditional Approach to Error Handling
	The Java Way: Exceptions
	Exception Classes
	Exception Subclasses
	Methods with Exceptions
	“Handling” Exceptions
	try / catch
	try / catch example
	printStackTrace() is your friend!
	Files and Streams
	Streams!??
	Hierarchy of Streams
	Types of Streams
	Streams and Threads
	Reading Example
	Writing Example
	HTTP
	HTTP Example
	Summary!

