
CS193j, Stanford Handout #29
Winter, 2001-02 Nick Parlante & Yan Liu

XML
XML -- Hype and Reality
XML stands for eXtensible Markup Language

What fundamental CS problem Is XML supposed to solve?

Suppose you have a bunch of dots (x,y pairs) you need to represent in a
program for processing.

In-memory representation is easy; use a Dot object to store the (x, y) coordinate
and then a Dots class that wraps an ArrayList of Dot objects work well.
Now you need to save these dots in a file or convert to a byte stream to be sent

over a network connection (The problem of Serialization)
We could use Java's default serialization mechanism, as we did for project 2

(Have Dot Implement Serializable and use ObjectOutputStream; but we have a
number of problems:

• If we change the data structure (e.g., add a Z value to a dot), cannot load
old file any more

• Cannot publish a spec for the file format so that other people can code a
reader

• Difficult to code a parser in a different language (such as C/C++) that can
read this file

• Collectively the problems above are known as the Data Interchange
Format problem

Instead of using Java Serialization, we could come up with our own plain-text
format, similar to what we did for project 1. The simple design of placing the
values for X and Y for each dot on a single line, separated by a space, solve
the problems above:
2 3
3 5

But we still have Issues:
• The format does not tell the structure of data; the same file could also be

storing a 2x2 matrix, for example.
• Difficult to generalize to more complex data structures; what If some dots

have more attributes than others? What If some dots could be associated
with an unlimited number of data items?

2

How about:
Dot X: 2 Y: 3 EndDot
Dot X: 3 Y: 5 EndDot

Now we are getting closer, but it’s hard to design a general specification that
could result in a good data-format for any type of data, and have everyone like
it enough to use it. Finding a good Data Formatting Standard is the problem
that XML is designed to solve.

How does XML solve the problem?
• By using tags to separate and annotate data Items, it could portray (but

not necessarily define, since that is application specific) a relationship
between a data Item, its attributes, and any associated data Items.

• Defines a uniform representation of syntax such that “off-the-shelf”
syntactic parsers can be produced

XML Is not the only solution, however It has become the most popular one. The
reasons being:

• XML looks and feels like HTML, so people feel comfortable with it.
• Applications in almost any language can find "off-the-shelf" parsers,

transformation libraries, and more
• DTDs and other schema languages can describe a particular XML

schema for parsers to check against
• Applications only need to agree on the meaning, or the "semantics" of the

data. They only have to do semantic parsing (In theory!)

Bottom Line:
By being a widely used standard, it makes many boring incompatibilities

go away -- creating real value.

Where do I find out more Info?
http://www.xml.org/
http://www.w3.org/XML
http://java.sun.com/xml

XML Tags
Tags -- meta content in the text. Like HTML tags; e.g.

her e i s some t ext <r ed>wi t h t hi s</ r ed> mar ked as r ed

• Tags are case sensitive <foo> and <FOO> may be treated differently
• Between the tags there may be raw text and/or more tags
• Tags with nothing in between them, i.e. <tag></tag>, can be written as

<tag />

3

• Every opening tag must have matching closing tag to be considered
“ well-formed” . Just <tag> without </tag> would not parse. (Different
from HTML)

• Closing tag must match the opening tag at the same nesting level; unlike
HTML, which allows <bold><Italics>…</bold></Italics>, XML does not
allow <e-mail><address>…</e-mail></address>. It must be <e-
mail><address></address></e-mail>

• Tag attributes stores a binding inside of a tag; may use single quote (') or
double quote (") for attribute values. example:
<dot x=" 72" y=" 13" / >
<node f oo=" bar " pi =' 3. 14' / >

Comments
Comments can be included in an XML document:
<! — Thi s i s a comment t hat woul d be i gnor ed by an XML par ser - - >

Special Characters
A few characters have meta-meaning in XML and must always be encoded. Note

that the encodings end with a semi-colon (;)
< encode as: <
> encode as: >
& encode as &
" encode as: "
' encode as '

Encoding special or reserved characters Is one of the biggest challenge In
developing a data-formatting language. XML does this well, but not
significantly better than other Ideas. In my opinion, the success of HTML has
made people tolerate the above special characters and use the encoding.

The XML Tree
Each XML document contains tag that defines a root “element.” This tag must

enclose the entire document. I.e., the following XML file would be illegal:
<?xml ver si on=' 1. 0' encodi ng=' ut f - 8' ?>
<Per son>
…
</ Per son>
<Per son>
…
</ Per son>

If you cannot decide on what to call the root element, just use <xml> </xml>

4

The root element makes the XML data to closely resemble a tree structure. If we
write XML without free text except between the Innermost (leaf) tags, the
resulting structure is like a tree:

<CS193J- St af f >
<Per son j ob=" Lect ur er " >

<name>Ni ck Par l ant e</ name>
<e- mai l >ni ck@st anf or d. edu</ e- mai l >

</ Per son>
<Per son j ob=" TA" >

<name>Yan Li u</ name>
<e- mai l >yl 314@st anf or d. edu</ e- mai l >

</ Per son>
<Per son j ob=" TA" >

<name>Henr y Hsi eh</ name>
<e- mai l >henr i @st anf or d. edu</ e- mai l >

</ Per son>
</ CS193J- St af f >

In my experience, this is the most common use of XML in programming projects.

Tags vs. Attributes
How do we use XML to represent a single dot?

1. Attribute Method
<dot x=" 27" y=" 13" / >

2. Tag Method
<dot >

<x>27</ x>
<y>13</ y>

</ dot >

Tags vs. Attributes style
There is no wide agreement about exactly when to use tags instead of attributes

and vice versa.
Nick & I prefer the "attribute" way where possible, since it seems simpler. It

works best when the number of children is fixed and the data itself is short.
<dot x='6' y='13' />

But suppose If a dot also has an id and also list of ids of dots that it's supposed
to be connected with (i.e. we want to represent a graph), then using attribute for
that list would look like:

<dot I d=' 1' x=' 6' y=' 13' nei ghbor =' 0' nei ghbor =' 2' …. / >

It works, but compare to:

5

<dot I d=' 1' x=' 6' y=' 13' >
<nei ghbor I d=' 0' / >
<nei ghbor I d=' 2' / >
…

</ dot >

I think this looks better, and is generally easier to parse.

So in general, If a node can have an arbitrary number of children, then tags are
the best way

<par ent >
<chi l d>. . </ chi l d>
<chi l d>. . </ chi l d>
<chi l d>. . </ chi l d>

</ par ent >

I also think that you should use tags If the relationship between the parent tag
and the would-be-child attribute Is not one-to-one. Also, the tag method is better
if the data is lengthy:

<descr i pt i on>How di d our const r uct ed subur ban l andscape
come t o be so unpl easant , and what t o do about i t .
The Geogr aphy of Nowher e i s a l andmar k wor k i n gr owt h
of t he New Ur bani sm movement . </ descr i pt i on>

There are other rules-of-thumb that you can use, such as using a tag for all data that users
would see while using an attribute for data that the user would not see. It’s something to get a
feel for once you are in an environment where XML is used everyday.

Dots XML Example
The "Dots" XML format -- a set of (x,y) points
Root node : "dots" -- parent of dot nodes
Child nodes : "dot" -- each with "x" and "y" attributes

<?xml ver si on=" 1. 0" encodi ng=" UTF- 8" ?>
<dot s>

<dot x=" 72" y=" 101" / >
<dot x=" 170" y=" 164" / >
<dot x=" 184" y=" 158" / >
<dot x=" 194" y=" 146" / >
<dot x=" 191" y=" 133" / >
<dot x=" 164" y=" 84" / >
<dot x=" 119" y=" 89" / >

</ dot s>

Can we enforce minimum of one <dot> in <dots>, without writing programming code?
Yes, with a DTD; see http://java.sun.com/xml/jaxp/dist/1.1/docs/tutorial/sax/5a_dtd.html for
details.

6

Java XML
JAXP project

Overview http://java.sun.com/xml/
Good tutorial http://java.sun.com/xml/jaxp/dist/1.1/docs/tutorial/

SAX
"Simple" parser; uses a event-based callback model that Invokes functions

that you define whenever the parser encounters a tag or attribute.
Very fast & has almost no memory overhead
Does not require the entire XML document to be read before semantic

processing can start (can stream XML data; e.g. If an XML data stream
contains a Iist of transactions to perform, a parser using SAX can perform
the transactions in parallel with parsing)

Places more work on the programmer
Have to access the XML data in a sequential form
Not covered in this Lecture, but the example code do have SAX parsing code

as well as DOM parsing code; if you are interested follow the tutorial at
http://java.sun.com/xml/jaxp/dist/1.1/docs/tutorial/sax/2a_echo.html

DOM
Parses entire file into memory first represented by an Internal tree of nodes

Can optionally check XML syntax
Can iterate over the tree to look at the nodes
Can edit the tree: add/remove/change nodes
If you know how to traverse a tree, you can use DOM
High memory overhead
Must have entire XML document to process semantically; cannot Invoke

meaningful action until the entire document Is parsed syntactically.
Using the library files

JAXP 1.1: xalan,jar, jaxp.jar, and crimson.jar -- these are in the cs108/jars
directory

JAXP 1.2: xalan.jar and xerces.jar – download the Java for XML Pack Winter
01 from http://java.sun.com/xml/downloads/javaxmlpack.html

On unix, add these jar files to your classpath
For CodeWarrior, add these jar files to your project

DOM Document
From an XML document builds an in-memory representation of the whole tree

with a pointer to the root node. It Is costly, but easy to use.

Node / Element
The nodes that make up the XML tree -- a node represents each <tag>....</tag>

section
Nodes contain other nodes -- "children"
Nodes can have attribute/value bindings

7

There can be free-form text in between nodes (like HTML), but we're not using
that feature.

In JAXP, Element is a subclass of Node. Our code will tend to use Element,
since it responds to get/set attribute, but Node does not.

Root
The root node is the one child of the document object
The root contains all the content

1. Reading
Our technique

Use the DocumentBuilder.parse() method to read the XML and build the
DOM in memory.

Traverse it and examine the nodes to get the data out Into our own run-time
data structure (I.e., our ArrayList of Point objects)

Alternatives
The SAX interface will show you, one at a time, the nodes of the XML

document. It does not build the tree in memory, but it's faster.
Another technique would be to use the DOM tree as our data model itself, so

there is no translation step for reading or writing.

Read DOM Into Memory
/ / The f ol l owi ng i s t he st andar d i ncant at i on t o get a Document obj ect

Document Bui l der Fact or y dbf =
Document Bui l der Fact or y. newI nst ance() ;

dbf . set Val i dat i ng(f al se) ;

Document Bui l der db = nul l ;
t r y {

db = dbf . newDocument Bui l der () ;
} cat ch (Par ser Conf i gur at i onExcept i on pce) {

pce. pr i nt St ackTr ace() ;
}

// Parse the XML to build the whole doc tree
Document doc = db.parse(file);

Essentially, we first create an instance of DocumentBuilderFactory, and then use that object to
create an instance of DocumentBuilder (this is called the “Factory” design pattern, and used
throughout JAXP), and finally use the document builder object to parse the document into
memory, building the DOM tree in the process.

Traversal Methods
Once you have the document object in memory, it's easy to look at its nodes...
/ / Get r oot node of document ; t he r oot node i s t he out er most bl ock
El ement r oot = doc. get Document El ement () ;

/ / Get l i st of chi l dr en of gi ven t ag name

8

NodeLi st l i st = r oot . get El ement sByTagName(" t agname") ;

/ / Number of chi l dr en i n l i st
i nt l en = l i st . get Lengt h() ;

/ / Get nt h chi l d
El ement el em = (El ement) l i st . i t em(n) ;

/ / Get an at t r i but e out of a el ement
/ / (r et ur ns " " i f t her e i s no such at t r i but e)
St r i ng s = el em. get At t r i but e(" at t r i but e") ;

2. Writing
Creating and Editing Elements in the
DOM Tree

/ / Cr eat e a new node (st i l l needs t o be added)
El ement el em = document . cr eat eEl ement (" t agname") ;

/ / Append a chi l d node t o an exi st i ng node
node. appendChi l d(chi l d_node) ;

/ / Set an at t r i but e/ val ue bi ndi ng i n a node.
/ / (t he st r i ngs shoul d be xml - r eady t ext - -
/ / no embeded " or < or &)
node. set At t r i but e(at t r - st r i ng, val ue- st r i ng)

DOM Writing Code
First technique (JAXP Standard)

Construct the DOM Document tree in memory
Use an XSLT Transform to format the DOM tree for output (in our example

we use the identity transform)

Second technique (An undocumented Trick in JAXP 1.1, no longer works in
JAXP 1.2)

Construct the DOM Document tree
Downcast the Document object to an XmlDocument
XmlDocument responds to a write() message where it writes itself out in text

form (undocumented and does not work for JAXP 1.2)

Third technique
Form the XML directly using print/println or string manipulation methods. You

would need to make sure you're writing valid XML (take care of < for <
etc.)

9

The following example uses the JAXP standard which works with both 1.1 and
1.2; the example code includes both this technique and the technique of forming
XML directly.

/ * *
Cr eat e t he whol e XML doc obj ect i n memor y r epr esent i ng t he cur r ent
dot s st at e.
Cr eat t he r oot node and append al l t he dot chi l dr en t o i t .

* /
pr i vat e Document cr eat eXMLDoc() {

/ / The f ol l owi ng i s t he st andar d i ncant at i on t o get a Document obj ect
/ / (i . e. I copi ed t hi s f r om t he API docs)

Document Bui l der Fact or y dbf =
Document Bui l der Fact or y. newI nst ance() ;

dbf . set Val i dat i ng(f al se) ;

Document Bui l der db = nul l ;
t r y {

db = dbf . newDocument Bui l der () ;
} cat ch (Par ser Conf i gur at i onExcept i on pce) {

pce. pr i nt St ackTr ace() ;
}

Document doc = db. newDocument () ;

/ / Cr eat e t he r oot node and add t o t he document
El ement r oot = doc. cr eat eEl ement (TAG_DOTS) ;
doc. appendChi l d(r oot) ;

/ / Go t hr ough al l t he dot s and append t hem t o t he DOTS node
I t er at or i t = dot Li st . i t er at or () ;
whi l e (i t . hasNext ()) {

Dot dot = (Dot) i t . next () ;
El ement dot El em = cr eat eDot El ement (doc, dot) ;
r oot . appendChi l d(dot El em) ;

}

r et ur n(doc) ;
}

publ i c voi d wr i t eToSt r eam(I nput St r eam i s) {
/ / Do i t t he mor e of f i c i al way, bui l d a DOM t r ee model
/ / and t hen use an XSLT t r ansf or m (i n t hi s exampl e we
/ / j ust use t he ' i dent i t y ' t r ansf or m) t o wr i t e out t he r esul t
Document doc = cr eat eXMLDoc() ; / / bui l d DOM t r ee

t r y {
/ / Use a Tr ansf or mer f or out put
Tr ansf or mer Fact or y t Fact or y =

Tr ansf or mer Fact or y. newI nst ance() ;
Tr ansf or mer t r ansf or mer = t Fact or y. newTr ansf or mer () ;

DOMSour ce sour ce = new DOMSour ce(doc) ;
St r eamResul t r esul t = new St r eamResul t (os) ;
t r ansf or mer . t r ansf or m(sour ce, r esul t) ;

} cat ch (Tr ansf or mer Conf i gur at i onExcept i on t ce) {
t ce. pr i nt St ackTr ace() ;

} cat ch (Tr ansf or mer Except i on t e) {

10

t e. pr i nt St ackTr ace() ;
}

}

Essentially we first follow the “factory” design pattern to make a transformer,
then wrap the XML document we generated with a DOMSource object, then
wrap the output stream with a StreamResult object, and finally invoke
transform with the doc as the source and the stream as the result.

Completed Dots Example
Paper copy of code handed out in class, and soft copy accessible on the web

from http://www.stanford.edu/class/cs193j/assignments/XMLExample/
Or from Leland from /usr/class/cs193j/assignments/XMLExample
The setup script setup the classpath for you
The directory contains following classes:

Dot - stores a dot (x, y)
Dots - abstract; stores a collection of dots; contains abstract methods
writeDotsToStream and readDotsFromStream
DotsSerialize - Subclass of Dots; achieves stream I/O through java
Serialization
DotsXML - Subclass of Dots; achieves stream I/O through XML parsing and
writing

In running DotsXML, experiment with the different XML reading/writing methods:
To read XML file with DOM:
j ava Dot sXML r eaddom f i l e. xml

To read XML file with SAX:
j ava Dot sXML r eadsax f i l e. xml

To write XML file with DOM:
j ava Dot sXML wr i t edom f i l e. xml

To write XML file with direct-string formulation:
j ava Dot sXML wr i t edi r ect f i l e. xml

XML Analysis
Standard Format
Like the plain text file, XML is a good, default way to store data in a way that will

be easy for other programs to parse.
e.g. your application's data file
e.g. your application's prefs file -- why make up yet another text format?

11

e.g. data exchange format -- a format to export your data so that some other tool
can read it

Deals with nesting, naming, quoting, ... in a standard way

XSL / XSLT
A movement to keep "presentation" out of XML
XSL is like a style sheet for XML
XML just stores the data, and then XSLT translates the XML into some other

format, like HTML
XSLT defines an XML transform that can be used to produce other formats. We

have already used the identity transform.
XSLT can be used for many arbitrary XML translations. The theory is that it will

be easier to express simple translations and transforms in XSLT, instead of
writing Java or Perl code to do the translation.

Big and Slow -- ok?
Data encoded in XML tends to take more space than other methods.
However it creates compatibility and saves programmer time -- historically that

tradeoff has fared well, especially as hardware gets faster.
DOM parsers are slow; SAX parsers are somewhat slow
In theory, XML can be compressed like a ZIP file

Backward/Forward Compatibility
The tag names declare what each piece of data is
This makes it easier to have optional bits of data in the format, which makes

backward/forward compatibility easier

Backward compatible: A new version of an app will be able to read the
documents of the old version -- just don't get confused if certain new nodes are
not there

Forward compatible: An old version of an app may be able to read the new
docs -- just ignore nodes you don't understand.

Round-Trip Compatibility
Round-trip (this is somewhere between hard and impossible), the new and old

versions of an application can read each other’s docs, and write them out
again without affecting the other version's state. This requires the old version
ignore the new nodes, yet preserve them in the document tree and write them
back out again after editing.

However, creates problems when trying to delete nodes, or If the schema has
more dependency between nodes other than the default tree structure

12

XML - "strict" lesson
Bad standards: TIFF, RTF, HTML -- different vendors implement it different ways

-- which makes the "space" of valid TIFF, HTML documents ill defined and
randomly incompatible.

Given a TIFF file that works in one program, it's hard to know if it will work in
another. This undermines the network effect advantage.

XML has learned the lesson: behavior in all cases is defined. Where, in C, the
def might say that a behavior in a weird case, like divide by 0, "undefined",
XML will say that a correct implementation must throw an error and halt.

As a result, the boundary between valid and invalid XML is sharply drawn -- an
XML document should work the same against different XML parser
implementations.

XML Scenarios..
1. App doc format
e.g. Minidraw documents
e.g. Apache prefs file
Rather than invent a custom file format, just use XML
Advantages

use standard code libs for read/write
Use standard conventions, for quoting, naming, etc. rather than making up

your own
format is easier for you and other programmers
gain XML's features; backward/forward compatibility could be a big

advantage
"It's just kewl!"

Disadvantages:
XML is not space efficient
May introduce more complexity than it is worth

13

2. Use DOM Tree Throughout
So far, we have read in the DOM tree and translated back and forth to our

internal representation.
Could use the DOM tree itself as our representation -- store things in the DOM

nodes, arrange the DOM nodes. Then no translation is required.
Also, this helps with the round-trip case
Disadvantage: it's more awkward to use your data model if it's in the DOM form

(with current technology anyway)
It's slow (retrieving values of data may require look up on the attribute or
element name) executing dot.getX() Is always faster than
getElement("dot").getAttribute("X")

It's unknown if the DOM strategy is worthwhile

3. XML vs. Database
Your Internet application could store its data as XML rather than text files
As the data gets larger and more complex, a database is probably a better

choice than XML. It has the ACID properties which XML does not; a hard disk
crash could wipe out your XML files but Is often "shrugged off" by a good
DBMS.

Could still use XML as the "export" format from your database -- an intermediate
format, than can be used as part of an SQL -> XML -> HTML or SQL -> XML ->
PDF path.

DBMS is generally good for "native" and/or "permanent" storage. Can use XML
as an export format, or an intermediate format as part of a multi-step
translation: SQL -> XML -> HTML, although perhaps just SQL -> HTML is
simpler.

XML is worthwhile if it really buys something in the translation. For example, if
there are multiple output formats that XML can drive easily: SQL -> XML, and
then XML - >A, XML -> B, XML -> C. Don't translate to XML without some
benefit.

4. Good XML application In the real
world: EZPrints.com
EZPrints.com offers a service where another website can send an "order" to

EZPrints containing image and a shipping address. EZPrints reads the order,
makes a print, and postal mails it to the given address.

XML is the perfect format for this problem -- EZPrints can publish a spec for what
tags are used in the order. Various web sites can read that spec and write
code to produce the XML. The process is simplified because all the parties
have a common understanding of XML.

Even if both parties are using databases internally, XML makes a great common
language of exchange.

