
Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

CS193J: Programming in Java
Summer Quarter 2003

Lecture 2
OOP/Java

Manu Kumar
sneaker@stanford.edu

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Handouts

• 3 Handouts for today!
– #5: Java 3
– #6: OOP Design
– #7: HW1: Pencil Me In

• Continue handout #4 from lecture
• Logistics

– July 3rd class show of hands

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Recap

• Last Time
– Course Introduction
– Student Introductions
– Introduction to Java
– OOP concepts

• To Dos
– Write a HelloWorld program in Java, compile

it and run it on Leland machines.
– SCPD students: email introductions

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Q&A and Updates

• Link to HTML tutorials on course web page
• Link to OOP presentation on course web page
• Link to slides on course web page
• Link to lecture archives on course web page
• Pointer to HW submission instructions included

in HW handout
• Smallest Java Virtual Machine

– K VM from Sun
• http://java.sun.com/products/cldc/ds/

– 50-80KB in its smallest configuration

http://java.sun.com/products/cldc/ds/

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Today

• OOP in Java (Student Example)
• Explore more Java features

– Primitives
– Arrays
– Multi-Dimensional Arrays
– String Class
– StringBuffer Class
– Static keyword

• OOP Design
– Encapsulation

• Interface vs. Implementation
– Client Oriented Design

• HW1: Pencil Me In
– Due before midnight Wednesday July 9th, 2003

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

OOP in Java (Handout #4)

• Java is fundamentally Object-Oriented
– Every line of code you write in Java must be

inside a Class (not counting import directives)
• Clear use of

– Variables
– Methods

• Re-use through “packages”
• Modularity, Encapsulation, Inheritance

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Student Java Example

• Complete code and explanation provided in
handout

• First some designations we will use for this
section
– The person who writes the inner implementation of

the class is the “programmer”
– The person who “uses” the class is the “client”

• The client cares about the interface exported by the
Class/Object

• Analogy
– Implementing an ATM machine vs. using an ATM

machine

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Implementation vs. Interface

• Implementation
– Data structures and code that implement the

features (variables and methods)
– Usually more involved and may have complex

inner workings
– The guts of the black box

• Interface
– The controls exposed to the “client” by the

implementation
– The knobs on the block box

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Student Client Side

• Plan
– Allocate objects with "new" -- calls constructor
– Objects are always accessed through pointers

• shallow, pointer semantics
– Send messages

• methods execute against the receiver
– Can access public, but not private/protected

from client side

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Object Pointers

• The declaration:
Student bart;

Declares “bart” as a pointer to an object of class
Student. It does not allocate the object

• Object is allocated by calling “new”
bart = new Student();

• Object pointers are “shallow”
– Using = (assignment) on a pointer, copies the value

so that two pointers may be pointing to the same
object

– Using == (equals) on a pointer simply compares
pointers and does not check if the objects are the
same internally

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Constructor

• Every class has a default “method” called
a Constructor
– Invoked when the object is to be “created” /

“allocated” by using “new”
• A class may have multiple constructors

– Distinguished at compile time by having
different arguments

– The default constructor takes no arguments
and is implicit when no other constructors are
specified

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Invoking methods (sending messages)

• bart.getUnits();
• bart.getStress();

• Fairly straightforward by design

• Objective is for client code to be very
simple, i.e. the client can use the object
easily.

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Student Client Code

// Make two students
Student a = new Student(12); // new 12 unit student
Student b = new Student(); // new 15 unit student (default ctor)

// They respond to getUnits() and getStress()
System.out.println("a units:" + a.getUnits() +

" stress:" + a.getStress());
System.out.println("b units:" + b.getUnits() +

" stress:" + b.getStress());

a.dropClass(3); // a drops a class

System.out.println("a units:" + a.getUnits() +
" stress:" + a.getStress());

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Student Client Code

// Now "b" points to the same object as "a" (pointer copy)
b = a;
b.setUnits(10);

// So the "a" units have been changed
System.out.println("a units:" + a.getUnits() +

" stress:" + a.getStress());

// NOTE: public vs. private
// A statement like "b.units = 10;" will not compile in a client
// of the Student class when units is declared protected or private

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Student Example Output

/*
OUTPUT...

a units:12 stress:120
b units:15 stress:150
a units:9 stress:90
a units:10 stress:100

*/

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Student Implementation

• Class Definition
public class Student extends Object {
... <definition of the Student ivars and methods>

}
• All classes are derived from the special class

“Object”
– We could have omitted extends Object here

• The class is defined in a file with the same name
and a .java extension
– In this case: Student.java

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

public / protected / private

• Public
– Accessible anywhere by anyone

• Protected
– Accessible only to the class itself and to it’s

subclasses or other classes in the same
“package”

• Private
– Only accessible within this class

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Student Implementation Code
// Student.java
/*
Demonstrates the most basic features of a class.
A student is defined by their current number of units.
There are standard get/set accessors for units.
The student responds to getStress() to report
their current stress level which is a function
of their units.
NOTE A well documented class should include an introductory

comment like this. Don't get into all the details -- just
introduce the landscape.

*/
public class Student extends Object {

// NOTE this is an "instance variable" named "units"
// Every Student object will have its own units variable.
// "protected" and "private" mean that clients do not get access
protected int units;

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Student Implementation Code
/* NOTE

"public static final" declares a public readable constant that
is associated with the class -- it's full name is Student.MAX_UNITS.
It's a convention to put constants like that in upper case.

*/
public static final int MAX_UNITS = 20;
public static final int DEFAULT_UNITS = 15;

// Constructor for a new student
public Student(int initUnits) {

units = initUnits;
// NOTE this is example of "Receiver Relative" coding --
// "units" refers to the ivar of the receiver.
// OOP code is written relative to an implicitly present receiver.

}

// Constructor that that uses a default value of 15 units
// instead of taking an argument.
public Student() {

units = DEFAULT_UNITS;
}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Student Implementation Code

// Standard accessors for units
public int getUnits() {

return(units);
}
public void setUnits(int units) {

if ((units < 0) || (units > MAX_UNITS)) {
return;
// Could use a number of strategies here: throw an
// exception, print to stderr, return false

}
this.units = units;
// NOTE: "this" trick to allow param and ivar to use same name

}
/*
Stress is units *10.
NOTE another example of "Receiver Relative" coding

*/
public int getStress() {

return(units*10);
}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Student Implementation Code

/*
Tries to drop the given number of units.
Does not drop if would go below 9 units.
Returns true if the drop succeeds.
*/
public boolean dropClass(int drop) {

if (units-drop >= 9) {
setUnits(units - drop); // NOTE send self a message
return(true);

}
return(false);

}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

An idiom explained

• You will see the following line of code often:
– public static void main(String args[]) { …}

• About main()
– Invoked when you try to run an Application
– Since the runtime must know which method to start

at, it is made static (more later on this) so there is only
one method per class

– The Client code we saw earlier can be inside this
main method.

• See handout for details.

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Java Features (Handout #5)

• Inheritance
– A way of defining more specific versions of a

class
• Shape

– Rectangle, Circle, Line

• We will cover inheritance in more detail
later
– For now just remember that all Java classes

inherently inherit from a special class called
Object (extends Object)

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Primitives

• Very similar to C
– Common across all platforms (JVM to the

rescue!)
– No unsigned variants

• Java Primitives

– Generally used as local variables, parameters
and instance variables (property of an object)

4 bytesint
8 bytes double2 bytes (unicode)char
4 bytesfloat1 bytebyte
8 byteslongtrue/falseboolean

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Primitives (cont)

• Note the lowercase letter for primitives!
• Primitives can be stored in arrays
• You cannot get a pointer to a primitive

– To do that you need an Object
• There are Object “wrappers” for all

primitives
– The Object wrappers use upper case names!

• Boolean, Integer, Float, Double
– Hold a single primitive value
– “Immutable!”

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Primitives (cont)

• Object wrappers also contain some useful
methods!

• Some common idioms to remember
– Integer.parseInt(String) parses a String into

an int primitive
– Integer.toString(int) makes a String out of an

int primitive
• The above idioms use static methods

– We will cover static methods in a bit

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Arrays

• Built in to Java
– Not faked using pointers like in C

• Arrays are typed
– Student[] students – will hold objects of type Student
– int[] numbers – will hold int primitives

• Allocated using new – similar to allocating a new
Object

• Arrays can be any size, but cannot change their
size once allocated
– No realloc() call like in C

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Arrays (cont)

• Declaring Arrays
– Preferred syntax: Student[] students;
– Syntax for C refugees: Student students[];

• Allocating Arrays
– students = new Student[100];
– int[] numbers = new int[2*i + 100];

• Accessing Array elements
– Same as C

• Java array extras
– Arrays know their length (array.length)
– Perform runtime checking on size

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Array examples

Int Array Code
// Here is some typical looking int array code -- allocate an array and fill it with

square numbers: 1, 4, 9, ...
// (also, notice that the "int i" can be declared right in the for loop -- cute.)
{

int[] squares;
squares = new int[100]; // allocate the array in the heap
for (int i=0; i<squares.length; i++) { // iterate over the array

squares[i] = (i+1) * (i+1);
}

}
Student Array Code
// Here's some typical looking code that allocates an array of 100 Student objects
{

Student[] students;
students = new Student[100]; // 1. allocate the array
// 2. allocate 100 students, and store their pointers in the array
for (int i=0; i<students.length; i++) {

students[i] = new Student();
}

}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Array Literals and Anonymous Arrays

• Array Literal/Constant
– Contents declared at declaration time

• String[] words = { "hello", "foo", "bar" };
• int[] squares = { 1, 4, 9, 16 };
• Student[] students = { new Student(12), new

Student(15) };

• Anonymous arrays
– No variable defined to point to the array

• new String[] { "foo", "bar", "baz"}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Array Utilities

• Java provides utilities for working on
Arrays
– System.arraycopy(sourceArray, sourceIndex,

destArray, destIndex, length)
• Will copy from one array to the other
• Similar to memcpy in C

– Arrays Class
• Convenience methods for filling, searching, sorting

• Good time to visit the Java Docs!
– API docs are your friend. USE THEM!!

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Multidimensional Arrays

• Similar to C
– int[][] big = new int[100][100]; // allocate a

100x100 array
– big[0][1] = 10;// refer to (0,1) element

• Caveat
– Unlike C, a 2-d java array is not allocated as a

single block of memory. Instead, it is
implemented as a 1-d array of pointers to 1-d
arrays.

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Strings

• Java has great support for Strings
– String is an object, not a point to an array of

chars
– Strings (and char) both use 2-byte characters

to support Internationalization (Kanji, Russian)
– Strings are “Immutable”

• String state doesn’t change
• No append() or reverse() that changes the state of

the object
• To change a String, a new String is created!
• This is done to allow sharing of objects

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Strings (cont)

• String constants
– Use double quotes

• “Hello World!”
– Builds a string and returns a pointer to it

• String concatenation
– Official way String.concat
– BUT for ease of use “This” + “That” will work!

• String a = "foo";
• String b = a + "bar"; // b is now "foobar“

• toString()
– Most classes support a toString which will give a

String representation of an Object!

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

String Class methods!

• Extensive list of methods available in the API
documentation!
– int length() -- number of chars
– char charAt(int index)-- char at given 0-based index
– int indexOf(char c) -- first occurrence of char, or -1
– int indexOf(String s)
– boolean equals(Object) -- test if two strings have

the same characters
– boolean equalsIgnoreCase(Object) -- as above, but

ignoring case
– String toLowerCase()-- return a new String,

lowercase
– String substring(int begin, int end) -- return a new

String made of the begin..end-1 substring from the original

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

String example

String a = "hello"; // allocate 2 String objects
String b = "there";
String c = a; // point to same String as a – fine

int len = a.length(); // 5
String d = a + " " + b; // "hello there"

int find = d.indexOf("there"); // find: 6
String sub = d.substring(6, 11); // extract: "there“

sub == b; // false (== compares pointers)
sub.equals(b); // true (a "deep" comparison)

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

StringBuffer

• Similar to String but mutable
– Difference due to performance

• StringBuffer Example
StringBuffer buff = new StringBuffer();
for (int i=0; i<100; i++) {

buff.append(<some thing>);
// efficient append

}
String result = buff.toString();
// make a String once done with appending

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

System.out

• System class
– Out represents the screen

• System.out.println()
– Prints the string followed by an end of line
– Forces a flush

• System.out.print()
– Does not print the end of line
– Does not force a flush

• System.out.flush()
– Force a flush

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

== vs. equals()

• Remember
– everything is a pointer (except primitives)

• ==
– Compares pointers only! (shallow

comparison)
– Does not compare what is pointed to by the

pointers
• equals() method

– Default implementation same as ==
– String class overrides to do a deep compare

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

String == and equals() example

String a = new String("hello");
// in reality, just write this as "hello“
// i.e. String a = “hello”;

String a2 = new String("hello");

a == a2 // false
a.equals(a2) // true

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Garbage Collector

• Example
– String a = new String("a");
– String b = new String("b");
– a = a + b; // a now points to "ab"

• Where did the original String a go?
– Still sitting in the heap (memory) but it is

“unreferenced”
• It is unreachable by the program

– But the Garbage collector knows it is there
and can come clean it up!

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Static

• Can have static
– Instance variables
– Methods

• Static variables and methods
– Are associated with the class itself!!
– Not associated with the object

• Therefore Statics can be accessed without
instantiating an object!

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Static Variable

• Like a global variable
– But on a class by class basis
– Stored in the class

• Static variable occurs as a single copy in
the class
– Instance variables occur as multiple copies –

one in each instance (object)
• Example

– System.out is a static variable!

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Static Methods

• Like a “global function”
– Again on a class by class basis

• No Receiver!
– Since the static method is associated with the

class, there is no object that is associated with
it and therefore, no “receiver”

– You can think of it as the class being the
receiver.

• Example
– System.arrayCopy() is a static method

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Static Fun

Object: bart
Type: Student

Name: Bart Simpson
Age: 10

Object: bart
Type: Student

Name: Bart Simpson
Age: 10

Methods: eat(), run() walk()

Class: Student
numStudents: 2

Methods: getNumStudents() Object: lisa
Type: Student

Name: Lisa Simpson
Age: 5

Methods: eat(), run() walk()

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Static Example

public class Student {
private int units;
// Define a static int counter
private static int count = 0;
public Student(int init_units) {

units = init_units;
// Increment the counter
count++;

}
public static int getCount() {

// Clients invoke this method as Student.getCount();
// Does not execute against a receiver, so
// there is no "units" to refer to here
return(count);

}
// rest of the Student class
...

}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Static Gotcha!

• Cannot refer to a non-static instance
variable in a static method
– There is no receiver (no object)
– So the instance variable doesn’t exist!

• Example
public static int getCount() {

units = units + 1; // error
}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

OOP Design (Handout #6)

• Principles of OO Design
– Encapsulation

• Modularity
• Inheritance (later)

– Client Oriented Design
• Implementation vs. Interface
• User-centered design

• Good design and planning will go a long
way in building software with fewer bugs!

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Encapsulation

• “Don’t expose internal data structures!”
• Objects hold data and code

– Neither is exposed to the end user
• Objects expose an interface

– Anthropomorphic nature of objects
• Think of objects and people who have specialized roles!

– Lawyer, Mechanic, Doctor

• Complexity is hidden inside the object
– More modular approach
– Less error prone

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Public Interface Design

• Not adequate to simply provide getters
and setters
– Also known as accessors and mutators

• The interface exported by a class should
mirror how that object is to be used.
– example: ATM machine

• “Think about what the client wants to
accomplish, not the details and
mechanism of doing the computation”

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Example: Bad Design #1

// client side code
private int computeSum(Binky binky) {

int sum = 0;
for (int i=0; i<binky.length; i++) { // BAD

sum += binky.data[i]; // BAD
}
return sum;

}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Exmaple: Bad Design #2

// client side code
private int computeSum(Binky binky) {

int sum = 0;
for (int i=0; i<binky.getLength(); i++) { // BAD

sum += binky.getData(i); // BAD
}
return sum;

}
• External entity is doing too much work, the

object should know how to do this itself!
– Give the man a fish or teach a man to fish…

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Example: Good Design

// Give Binky the capability
// (this is a method in the Binky class)
public int computeSum() {

int sum = 0;
for (int i=0; i<length; i++) {

sum += data[i];
}
return sum;

}
// Now on the client side we just ask the object to

perform the operation
// on itself which is the way it should be!
int sum = binky.computeSum();

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Advantages of Encapsulation

• Clean Code!
– Client code is cleaner and easier to understand

• Modularity
– Easier debugging, less complexity

• Separate testing
– Unit testing is possible

• Re-Use
• Team Programming

– Easier to break down work amongst group members

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

OO Encapsulation Summary

• Separate abstraction from implementation
– in OOP, expressed as messages (interface)

vs. methods (implementation).
• "Expose" an interface that makes sense to

the clients.
– Ideally, the interface is simple and useful to

the client, and the implementation complexity
is hidden inside the object.

• Objects are responsible for their own state
– Move the code to the data it operates on.

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Client Oriented Design

• Based on what the user wants to
accomplish
– Not on how you implemented the functionality

• Intuitive and well documented
– Java libraries are in general a good example

of this
• Principle of least surprise
• Common-case convenience methods

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

HW #1: Pencil Me In! (Handout #7)

• Basic Idea:
– Input a text file description of schedule

• Using one time events
• Recurring events

– Output listing of appointments for the week
• List format
• Table format

• Handout
– Lots of detail and design ideas – READ WELL!
– Start early!

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

HW #1: Pencil Me In!

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

HW #1: Pencil Me In! (Handout #7)

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Summary

• Today
– OOP/Java

• Student Example
– Java Features

• arrays, strings, static etc
– OOP Design

• encapsulation, client-oriented design

• Assigned Work:
– HW #1: Pencil me In

• Due before midnight Wednesday, July 9th, 2003
– Skim the Sun Java Tutorial

• http://java.sun.com/docs/books/tutorial/

http://java.sun.com/docs/books/tutorial/

	CS193J: Programming in JavaSummer Quarter 2003Lecture 2OOP/Java
	Handouts
	Recap
	Q&A and Updates
	Today
	OOP in Java (Handout #4)
	Student Java Example
	Implementation vs. Interface
	Student Client Side
	Object Pointers
	Constructor
	Invoking methods (sending messages)
	Student Client Code
	Student Client Code
	Student Example Output
	Student Implementation
	public / protected / private
	Student Implementation Code
	Student Implementation Code
	Student Implementation Code
	Student Implementation Code
	An idiom explained
	Java Features (Handout #5)
	Primitives
	Primitives (cont)
	Primitives (cont)
	Arrays
	Arrays (cont)
	Array examples
	Array Literals and Anonymous Arrays
	Array Utilities
	Multidimensional Arrays
	Strings
	Strings (cont)
	String Class methods!
	String example
	StringBuffer
	System.out
	== vs. equals()
	String == and equals() example
	Garbage Collector
	Static
	Static Variable
	Static Methods
	Static Fun
	Static Example
	Static Gotcha!
	OOP Design (Handout #6)
	Encapsulation
	Public Interface Design
	Example: Bad Design #1
	Exmaple: Bad Design #2
	Example: Good Design
	Advantages of Encapsulation
	OO Encapsulation Summary
	Client Oriented Design
	HW #1: Pencil Me In! (Handout #7)
	HW #1: Pencil Me In!
	HW #1: Pencil Me In! (Handout #7)
	Summary

