
Assignment III:

Graphing Calculator
Objective

The goal of this assignment is to reuse your CalculatorBrain and
CalculatorViewController objects to build a Graphing Calculator for iPhone and iPad.

By doing this, you will gain experience creating your own custom view, building another
UIViewController, using a protocol to delegate responsibility from one object to
another, creating a UINavigationController and UISplitViewController, creating a
segue in a storyboard, handling gestures, and making a Universal application that runs
on both iPad and iPhone/iPod Touch.

Be sure to check out the Hints section below in full before you start!

Also, check out the latest version of the Evaluation section to make sure you understand
what you are going to be evaluated on with this (and future) assignments.

Materials

• If you successfully accomplished last week’s assignment, then you have all the materials
you need for this week’s. You can try to modify your existing program or create a new
project from scratch but, in any case, be sure to save a copy of last week’s work before
you start.

STANFORD CS193P IOS APPLICATION DEVELOPMENT	

 	

 FALL 2011

PAGE 1 OF 8	

 	

 ASSIGNMENT III: GRAPHING CALCULATOR

Required Tasks

1. When your application is run on the iPhone, it must present the user-interface of your
calculator from Assignment 2 inside a UINavigationController.

2. The only variable button your calculator’s user-interface should present is x (so remove
any others you added in Assignment 2 and you can remove your Test buttons and the
UILabel which shows the value of the variables being used in the display).

3. Add a Graph button to your calculator’s user-interface that, when pressed, segues to a
new MVC (that you will have to write) by pushing it onto the
UINavigationController’s stack (on the iPhone). The new MVC graphs whatever
program was in the calculator when the button was pressed. To draw the graph you
will iterate over all the pixels in your view horizontally (x) and use
+runProgram:usingVariableValues: to get the corresponding vertical (y) value. You
will, of course, have to convert to/from your view’s coordinate system from/to a
reasonable graph coordinate system. You will need a scale and origin to do this
coordinate system conversion. If the user has not already chosen a scale and origin
for the graph (see Required Tasks 7 & 8 below), pick a reasonable starting scale and
origin.

4. Anytime a graph is on screen, the description of the program used to draw it (e.g. the
result of your +descriptionOfProgram: method) should also be shown on screen
somewhere sensible. This might be a different place on the iPhone versus the iPad.

5. To implement your new MVC, you must write a custom graphing View which must
display the axes of the graph in addition to the plot of the program. Code will be
provided on the class website which will draw axes with an origin at a given point and
with a given scale, so you will not have to write the Core Graphics code for the axes,
only for the graphing of the program itself. You probably will want to examine the
provided axes-drawing code to understand how the scaling works before you do this or
any of the following Required Tasks.

6. Your graphing UIView must be generic and reusable (i.e. it should be a generic x-y
graphing class and know nothing about a CalculatorBrain). Use a protocol to get the
graphing view’s data because Views should not own their data.

7. Support the following gestures inside your graphing view:

• Pinching (adjusts your view’s scale).

• Panning (moves the entire graph, including axes, to follow the touch around).

• Triple-tapping (moves the origin of the graph to the point of the triple-tap).

8. Make your Calculator work on the iPad too (in the same application, i.e., a Universal
application) by having two storyboards, one for the iPhone (described above) and one
for the iPad that uses a UISplitViewController to present your old Calculator MVC
on the left of the screen (or in a popover) and your new graphing MVC on the right.

STANFORD CS193P IOS APPLICATION DEVELOPMENT	

 	

 FALL 2011

PAGE 2 OF 8	

 	

 ASSIGNMENT III: GRAPHING CALCULATOR

Since both MVCs will be on the screen at the same time, you will not need a segue;
instead, you will have to get a pointer to the other MVC using UISplitViewController
API. You should only update the right side of the split view when the Graph button is
pressed (not continuously as the brain is modified).

9. You do not have to support rotation on all devices, but on the devices where you do
support it, the user-interface should look good in all cases (so get your struts and
springs right in your storyboard(s)).

10.Once the user picks a scale by pinching or a new origin by panning or tapping, the
new value should be stored in NSUserDefaults so that the scale and origin persist as
new programs are graphed and even through relaunchings of your program.

STANFORD CS193P IOS APPLICATION DEVELOPMENT	

 	

 FALL 2011

PAGE 3 OF 8	

 	

 ASSIGNMENT III: GRAPHING CALCULATOR

Hints

1. Get the first two Required Tasks working (i.e. your old calculator UI in a navigation
controller on the iPhone with a few things removed) before you start working on your
new MVC.

2. Whenever you drag files into a project (e.g. the AxesDrawer class’s .m and .h), make
sure you click the box that says “Copy items into destination group’s
folder (if needed).”

3. As a reminder, the way to create new things (including your new graphing MVC’s
UIViewController subclass and your new graph UIView subclass and your iPad
storyboard) is to use the menu item New File ... in the File menu.

4. Your new UIViewController and your new UIView are the only new classes you should
have to write from scratch for this assignment.

5. Your new Controller (the graphing one) is just like any other MVC Controller: it’s
going to want to have a Model (what is the Model for this new Controller, do you
think?) and outlets into its View. Before you go on to do anything else in this
assignment, add a @property to this Controller for its Model (if you proceed without
really understanding what this Controller’s Model is, you might have trouble
implementing the rest of the assignment). Don’t get this Controller’s Model confused
with your CalculatorViewController’s Model. THEY ARE DIFFERENT. And
don’t over-think this. Your new Controller’s Model is near at hand!

6. Don’t forget to set the class of your new UIViewController with the Identity Inspector
after you drag out a generic one from the Object Library into your storyboard(s).
Ditto the class of your graphing UIView.

7. It might be a good strategy to implement the drawRect: in your custom graphing
UIView after you have your MVCs all wired up in your storyboard(s) so you can easily
test it once you start working on it.

8. You’ll need an IBOutlet in your new Controller to point to your graphing view for a
variety of reasons. Your graphing view needs its data source delegate set, gesture
recognizers added to it, and it needs to told that it needs to redraw itself when its data
source delegate would provide different data if asked again.

9. You can convert an existing iPhone-only project to a Universal one in the Summary
tab of your Calculator Target (click on the topmost icon in your Navigator, then click
on the Calculator under Targets). This is also where you set which storyboard is used
on which platform.

10. When you drag a split view controller out of the Object Library into a storyboard, it
(tries to be helpful and) gives you a navigation controller with a table view in the left
side of the split view controller by default. You don’t need them, so you can just delete
those controllers and then drag a new UIViewController from the Object Library (set

STANFORD CS193P IOS APPLICATION DEVELOPMENT	

 	

 FALL 2011

PAGE 4 OF 8	

 	

 ASSIGNMENT III: GRAPHING CALCULATOR

its class to your CalculatorViewController), then use ctrl-drag to connect it as your
split view’s master.

11. You will have to copy/paste your Calculator’s UI from one storyboard to the other
when you go to create your iPad version, and you may have to wire the buttons and
labels back up (copying and pasting views between storyboards does NOT preserve
the target/action or outlet connections, but copying and pasting entire view
controllers does). The #1 reason your iPad storyboard will not work is because you
forget to wire up one of its outlets (e.g. an outlet to your graph view or display or a
target/action message from one of your many buttons).

12. When you go to implement your graphing view’s drawRect:, the first thing you’ll want
to do is to use the helper code provided to draw the axes (just drag it into your project,
but note Hint 2 above). To make it easy on yourself, make sure you use the same
scaling approach as the helper class does (it’s documented in that class’s header file).
All you need to do to use this helper class is set up the graphics state you want (colors,
etc.), then call the lone class method in the helper class from your drawRect:. It will
automatically use the current drawing context.

13. The implementation of your custom drawRect: is deceptively simple. You just need to
iterate over every pixel across the width of the area in your view you want to draw and
convert (considering scale and origin) the horizontal position from your custom
UIView’s coordinate space to the coordinate space of the graph you are drawing (this
converted position will be the x-axis of the data you are graphing), then ask your data
source delegate to provide the y-axis position for that x value, then convert that y-axis
value back to your UIView’s coordinates and then use Core Graphics to draw to the
next point.

14. Your graphing UIView’s scale and origin are not its data. They are properties of the
UIView that control how its data is drawn. Therefore they do not need to be delegated.
It is not unreasonable in certain circumstances for a View to delegate some of its more
complicated “how to draw me” properties (in addition to delegating the source of any
of its data), but it is not necessary in this case.

15. It’s not exactly the right thing to do to draw a line from point to point (especially if
you’re zoomed way out or have a discontinuous expression), but we’ll accept it for this
assignment since it’s simple to implement and it’s “the right thing” a lot of the time. ;-)
Check out the Extra Credit on this front below.

16. To take advantage of the very high resolution Retina displays on the iPhone4 and new
iPod Touch devices, be sure to iterate over pixels, not points, as you move along the x-
axis in your graphing view. Remember UIView’s contentScaleFactor method.

17. You probably will want to implement setters for your drawing attributes in your
custom graphing view so that, when someone changes these attributes, your view gets
marked as needing to be redrawn.

STANFORD CS193P IOS APPLICATION DEVELOPMENT	

 	

 FALL 2011

PAGE 5 OF 8	

 	

 ASSIGNMENT III: GRAPHING CALCULATOR

18. Your graphing view’s contentMode almost certainly will want to be
UIViewContentModeRedraw since your drawRect: is (should be!) very high resolution.

19. Zooming in and out (pinching) is just a matter of changing the scale you are using to
convert to/from view coordinates from/to your graph’s coordinates. In other words,
the pinching gesture handler should be very simple. Ditto panning and tapping with
respect to your view’s graph’s origin.

20. It’s fine if your graph’s origin is maintained with respect to the upper left corner of
the view when you rotate the device (as opposed to maintaining it relative to the center
of your view, for example, which might be more what the user expects).

21. If all of this seems very similar to the Psychologist and Happiness demos we did this
week in class, then you’re on the right track!

22. As a guide, this entire assignment can be done in under 100 lines of code. Only a
handful of lines of code need to be added to your existing CalculatorViewController
and no changes should be required at all in your CalculatorBrain.

23. To test your application, try entering the program sin(x) or a simple line of the form
mx+b or a quadratic equation. Try it without any x variable at all. Try it with a
discontinuous function (e.g. 1/x or x * cos(1/x)). Basically try anything that you
think might break it.

24. The biggest “food for thought” on this assignment is the reusability and the scope of
the keys you want to use in NSUserDefaults for your scale and origin preservation.
Are you going to store these “by View” or “by Controller” or “by Application” or ???
For example, what if (in a future version of your application) you had two graph
views on the screen at the same time? You wouldn’t want their scale and origin to
be tied to each other! Give this your best shot. There’s no “right answer.”

25. You’ll almost certainly want your graphing view controller to be your split view’s
delegate on the iPad since it is the one who will have to put the button in a toolbar
when your calculator view controller gets hidden by rotation. This is much simpler
than what Psychologist had to do.

STANFORD CS193P IOS APPLICATION DEVELOPMENT	

 	

 FALL 2011

PAGE 6 OF 8	

 	

 ASSIGNMENT III: GRAPHING CALCULATOR

Evaluation

In all of the assignments this quarter, writing quality code that builds without warnings
or errors, and then testing the resulting application and iterating until it functions
properly is the goal.

Here are the most common reasons assignments are marked down:

• Project does not build.

• Project does not build without warnings.

• One or more items in the Required Tasks section was not satisfied.

• A fundamental concept was not understood.

• Code is sloppy and hard to read (e.g. indentation is not consistent, etc.).

• Assignment was turned in late (you get 3 late days per quarter, so use them wisely).

• Code is too lightly or too heavily commented.

• Code crashes.

STANFORD CS193P IOS APPLICATION DEVELOPMENT	

 	

 FALL 2011

PAGE 7 OF 8	

 	

 ASSIGNMENT III: GRAPHING CALCULATOR

Extra Credit

1. In the Hints section it is noted that you are allowed to draw your graph by drawing a
line from each point to the next point. Clearly if your function were discontinuous (e.g.
1/x) or if you had zoomed out so far that drawing a line between points would be
jumping over a lot of changes in y, this would give misleading results to the user. The
best thing would probably be to simply draw dots at each coordinate you calculate.
This would not help much with the zoomed-out-too-far problem, but it would certainly
be more accurate on discontinuous functions. It is up to you to figure out how to draw
a dot at a point with Core Graphics.

2. If you do Extra Credit #1, you’ll notice that some functions (like sin(x)) look so much
nicer using the “line to” strategy (at least when zoomed in appropriately). Try dragging
a UISwitch into your user-interface which lets the user switch back and forth between
“dot mode” and “line to” mode drawing.

3. Improve the performance of panning. To do this, you need to try to understand where
the CPU cycles are going when the graph is drawn. Is it our inefficient
runProgram:usingVariableValues: method? Or is it all the Core Graphics calls we
are making each time? Is there a simple way to reduce calls to both of these things in
our drawRect:? Or is the performance issue something else entirely? If you are very
brave, you can try to figure out how to use the Time Profiler (hold down Run in Xcode
and pick Profile, then choose the Time Profiler from the dialog that appears). That’s
the way to really know where the time’s going.

STANFORD CS193P IOS APPLICATION DEVELOPMENT	

 	

 FALL 2011

PAGE 8 OF 8	

 	

 ASSIGNMENT III: GRAPHING CALCULATOR

