CS193P - Lecture 17

iPhone Application Development

Bonjour
NSStream
GameKit
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Announcements

* All Paparazzi assignments should be in!
« Work on your final projects

* Final exam is Thursday, 3/18
= 12:15 - 3:15pm
- Hewlett 201
- We will work on schedule for demos

- If you have any special requests, let us know
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Topics

* Bonjour
- Automatic Configuration

* NSStream
- Asynchronous communication
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Bonjour
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Bonjour

* Three main functions:
- Automate address distribution and name mapping

- Publish availability of a service
= Discover available services

* Open protocol Apple submitted to IETF
- www.zeroconf.org
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Bonjour

* Makes LANSs self configuring
- Requires no administration

- Assign addresses without a DHCP server
- Map names to addresses without a DNS server
- Find services without a directory server
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Automatic Addressing

* Bonjour will pick a random address, see if it is in use
- If it is not in use, it's yours

- If it is in use, try again
 Uses “.local.” as a virtual top-level domain
- For example: iPhone3G.local.
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Advertising Services

* Applications provide a service name and port
* Follows same DNS specific-to-general model

» ServiceName._ServiceType._TransportProtocolName.Domain
- Service Name is a human readable descriptive name

= Maximum of 63 octets of UTF-8
= All characters are allowed
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Advertising Services

* Applications provide a service name and port
* Follows same DNS specific-to-general model

» ServiceName._ServiceType._TransportProtocolName.Domain
= Service Type is an IANA registered protocol name

- Maximum of fourteen characters
= Format of [a-z0-9]([a-z0-9\-]*[a-z0-9])?
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Advertising Services

* Applications provide a service name and port
* Follows same DNS specific-to-general model

» ServiceName._ServiceType._TransportProtocolName.Domain

- Transport Protocol Name is either TCP or UDP

- Your own awesomely inventive protocol is not supported...
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Service Naming

Canon MP780._ipp._tcp.local.

{

Domain

Protocol

Service Type
(Internet
Printing
Protocol)

Service Name
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Publishing a Service

* NSNetService is used to publish services via Bonjour

NSNetService * service;

_service = [[NSNetService alloc] initWithDomain:@"”"”
type:@” ipp. tcp”
name:@”Canon MP780"
port:4721];

* Leaving domain blank implies “.local.”
* Leaving name blank will use the device’s iTunes name
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Publishing a Service

* NSNetService is entirely asynchronous

// Set up delegate to receive callbacks
[ service setDelegate:self];

[ service publish];

* Always remember to unset the delegate in dealloc!

- (void)dealloc {
[ service setDelegate:nil];
[ service stop];
[ service release];

[ super dealloc];
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NSNetService Delegate Methods

» Conflict resolution handled automatically

» Status is communicated to the delegate

— (void)netServiceWillPublish: (NSNetService *)sender

— (void)netServiceDidPublish: (NSNetService *)sender

— (void)netService: (NSNetService *)sender
didNotPublish: (NSDictionary *)errorDict

* errorDict is like an NSError - has two keys, one for error
domain and one for error code.
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Finding a Service

* Applications register service names with local daemon which
handles responding to lookup queries

» Service discovery is completely independent of service
implementation

* Resolving a service gives you an address and a port
= Can also get NSStreams pointing to that location
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Finding a Service

* NSNetServiceBrowser is used to search for services on the
network.

NSNetServiceBrowser * browser;

_browser = [[NSNetServiceBrowser alloc] init];

[ browser setDelegate:self];
[ browser searchForServicesOfType:@” ipp. tcp.”

inDomain:Q"”"];
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NSNetServiceBrowser Delegate Methods

* NSNetServiceBrowser browsing is also asynchronous

* Delegate methods called as services come and go

(void)netServiceBrowserWillSearch: (NSNetServiceBrowser *)browser
(void)netServiceBrowserDidStopSearch: (NSNetServiceBrowser *)browser

(void)netServiceBrowser:
didNotSearch:

(void)netServiceBrowser:
didFindService:
moreComing:

(void)netServiceBrowser:
didRemoveService:
moreComing:
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(NSNetServiceBrowser *)browser
(NSDictionary *)errorInfo

(NSNetServiceBrowser *)browser
(NSNetService *)service
(BOOL )more

(NSNetServiceBrowser *)browser
(NSNetService *)service
(BOOL )more




Service Resolution
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Service Resolution

* NSNetServices found by NSNetServiceBrowser must have their
addresses resolved before use:

[netService setDelegate:self];
[netService resolveWithTimeout:5];
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Service Resolution

* NSNetServices found by NSNetServiceBrowser must have their
addresses resolved before use:

[netService setDelegate:self];
[netService resolveWithTimeout:5];

« Status communicated aynschronously to delegate:

- (void)netService: (NSNetService *)sender
didNotResolve: (NSDictionary *)errorDict;
e Same errorDict as before.
— (void)netServiceDidResolveAddress: (NSNetService *)sender;
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Service Resolution

* NSNetServices found by NSNetServiceBrowser must have their
addresses resolved before use:

[netService setDelegate:self];
[netService resolveWithTimeout:5];

« Status communicated aynschronously to delegate:

- (void)netService: (NSNetService *)sender
didNotResolve: (NSDictionary *)errorDict;
e Same errorDict as before.
— (void)netServiceDidResolveAddress: (NSNetService *)sender;
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Service Resolution

* NSNetServices found by NSNetServiceBrowser must have their
addresses resolved before use:

[netService setDelegate:self];
[netService resolveWithTimeout:5];

« Status communicated aynschronously to delegate:

- (void)netService: (NSNetService *)sender
didNotResolve: (NSDictionary *)errorDict;
e Same errorDict as before.
— (void)netServiceDidResolveAddress: (NSNetService *)sender;

* Once a service has been resolved you can use the address
information to connect to it
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Bonjour Service Publishing and

Searching Demo
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NSStreams
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Service Resolution

* NSNetService will generate NSStream instances for you

Tuesday, March 2, 2010



Service Resolution

* NSNetService will generate NSStream instances for you

NSInputStream *inputStream nil;
NSOutputStream *outputStream nil;

[netService getInputStream:&inputStream
outputStream: &outputStream];
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What's an NSStream?

* Sort of like sockets, but without select

» State changes are asynchronously sent to the delegate

 Writes / Reads are still synchronous

* You can support multiple streams and still operate on a single
thread

* Device agnostic - we'll use sockets, but could easily be files,
memory locations, etc.
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NSObject

A

NSStream

J

4 »

NSInputStream NSOutputStream
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NSStream Class

* Opening a stream

[stream setDelegate:self];

[stream scheduleInRunLoop:[NSRunLoop currentRunLoop]
forMode:NSRunLoopCommonModes ] ;

[stream open];

* Closing a stream

[stream close];

[stream removeFromRunLoop:[NSRunLoop currentRunLoop]
forMode:NSRunLoopCommonModes ] ;

[stream setDelegate:nil];
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What's a Run Loop?

* Easy event processing
- You've been using them, but you don't even know it!

[ Events J bm

»

NSRunLoop

* Scheduling the NSStream on the NSRunLoop causes it to send
its events when that run loop spins.
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Okay, what'’s a run mode?

* Run loops have an unbounded number of run loop modes.

* Events (sources, timers, etc) are scheduled to run only in certain
run loop modes.

» This allows you to block events from occurring during high-
feedback event loops

* For instance, UITrackingRunLoopMode is used for tracking
finger touches. Not servicing other sources here can be a huge
responsiveness win.

* NSRunLoopCommonModes includes the publicly defined
common modes (including tracking). You can also define your
own run loop mode to only service your events.
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NSStream Delegate Call

» Just a single method

- (void)stream: (NSStream *)theStream

handleEvent: (NSStreamEvent)streamEvent

» Several different event types
- Some examples:

NSStreamEventOpenCompleted
NSStreamEventHasSpaceAvailable
NSStreamEventErrorOccurred

NSStreamEventEndEncountered
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NSOutputStream

* Only one method you'll really use

- (NSInteger)write:(const uint8 t *)buffer

maxLength: (NSUInteger)length

e For instance:

// outputStream is an already opened NSOutputStream
// with space available.

const char *buff = “Hello World!"”;
NSUInteger bufflLen = strlen(buff);

NSInteger writtenLength =
[outputStream write:(const uint8 t *)buff
maxLength:strlen(buff)];

if (writtenLength != bufflLen) {
[NSException raise:@”"WriteFailure” format:@”"];
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NSInputStream

* Two useful methods, but we'll focus on one

- (NSInteger)read: (uint8 t *)buffer
maxLength: (NSUInteger)length

e For instance:

// inputStream is an already opened NSInputStream
// with space available.

unit8 t buff[1024];
bzero(buff, sizeof(buff));
NSInteger readLength =
[ inputStream read:buff
maxLength:sizeof (buff) - 1];
buff[readLength] = ‘\0’;
NSLog(@”"Read: %s”, (char *)buff);
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Messaging with NSStream
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GameKit

Discovery and Connectivity
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GameKit

* Peer-to-Peer connectivity
- Abstracts away Bonjour and Stream creation

- Nearby (Bluetooth) & Online (Wifi) support

* In-Game Voice
« Facilitates voice communication between two devices
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GameKit Classes

» GKPeerPickerController
- Presents Ul prompting user to search for peers

= Facilitates creation of GKSessions

* GKSession
- Manages streams of data between peers

- Allows sending to single peer, or broadcast to all

» GKVoiceChatService
- Manages audio between peers

- Controls volume, detecting whether peer or local user is
speaking
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GKSession

* Manages discovery of peers
* Abstracts streaming and Bonjour code

- (1d)initWithSessionID:(NSString *)sessionID
displayName:(NSString *)name
sessionMode: (GKSessionMode)mode

typedef enum {
GKSessionModeServer,
GKSessionModeClient,
GKSessionModePeer

} GKSessionMode;

Tuesday, March 2, 2010



GKSession

* Properties include:
- displayName - Your name, as seen by your peers

- peerlD - unique ID, identifying your Session to your peers
- sessionlD - String used by your Application to filter peers

* Delegate methods:
- Notifies of state change of a peer’s sesssion

- Notifies of connection requests
= Notifies of errors with sessions or connections
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GKSession - Sending & Receiving Data

 Send data to specific peers

- (BOOL)sendData: (NSData *)data toPeers: (NSArray *)peers
withDataMode: (GKSendDataMode)mode error: (NSError **)error;

» Send data to ALL connected peers

- (BOOL)sendDataToAllPeers: (NSData *)data withDataMode:
(GKSendDataMode )mode error: (NSError **)error;

* Delegate method to receive data:

- (void)receiveData: (NSData *)data fromPeer: (NSString *)peer
inSession: (GKSession *)session context:(void *)context;
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GKPeerPickerController

* Provides Ul to connect to peer
* Allows user to pick between “Nearby” and “Online”

* Nearby
« Bluetooth communication

- Most of the work is handled for you under-the-hood

* Online
- Hands off responsibility to the application

- App builds or connects to server
= Associates users in server
- App is responsible for handling communication
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Initiating a connection

// Allocate the PeerPickerController

GKPeerPickerController *peerPicker;
peerPicker = [[GKPeerPickerController alloc] init];

// Set up delegate to receive callbacks
peerPicker.delegate = self;

peerPicker.connectionMask =
GKPeerPickerConnectionTypeOnline |

GKPeerPickerConnectionTypeNearby;

// Display the Peer Picker
[ peerPicker show];
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Receiving a connection

* Return a session for the requested type

- (GKSession *)peerPickerController:
(GKPeerPickerController *)picker sessionForConnectionType:
(GKPeerPickerConnectionType)streamEvent {

return [[[GKSession alloc] initWithSessionID:nil
displayName:localName sessionMode:GKSessionModePeer ]
autorelease];

* Accept connection from peer

- (GKSession *)session: (GKSession *)session
didReceiveConnectionRequestFromPeer: (NSString *)peerID {

[session acceptConnectionFromPeer:peerID error:nil];
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GameKit demo
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