CS193P - Lecture 17

iPhone Application Development

Bonjour
NSStream
GameKit

Tuesday, March 2, 2010

Announcements

* All Paparazzi assignments should be in!
« Work on your final projects

* Final exam is Thursday, 3/18
= 12:15 - 3:15pm
- Hewlett 201
- We will work on schedule for demos

- If you have any special requests, let us know

Tuesday, March 2, 2010

Topics

* Bonjour
- Automatic Configuration

* NSStream
- Asynchronous communication

Tuesday, March 2, 2010

Bonjour

Tuesday, March 2, 2010

Bonjour

* Three main functions:
- Automate address distribution and name mapping

- Publish availability of a service
= Discover available services

* Open protocol Apple submitted to IETF
- www.zeroconf.org

Tuesday, March 2, 2010

Bonjour

* Makes LANSs self configuring
- Requires no administration

- Assign addresses without a DHCP server
- Map names to addresses without a DNS server
- Find services without a directory server

Tuesday, March 2, 2010

Automatic Addressing

* Bonjour will pick a random address, see if it is in use
- If it is not in use, it's yours

- If it is in use, try again
 Uses “.local.” as a virtual top-level domain
- For example: iPhone3G.local.

Tuesday, March 2, 2010

Advertising Services

* Applications provide a service name and port
* Follows same DNS specific-to-general model

» ServiceName._ServiceType._TransportProtocolName.Domain
- Service Name is a human readable descriptive name

= Maximum of 63 octets of UTF-8
= All characters are allowed

Tuesday, March 2, 2010

Advertising Services

* Applications provide a service name and port
* Follows same DNS specific-to-general model

» ServiceName._ServiceType._TransportProtocolName.Domain
= Service Type is an IANA registered protocol name

- Maximum of fourteen characters
= Format of [a-z0-9]([a-z0-9\-]*[a-z0-9])?

Tuesday, March 2, 2010

Advertising Services

* Applications provide a service name and port
* Follows same DNS specific-to-general model

» ServiceName._ServiceType._TransportProtocolName.Domain

- Transport Protocol Name is either TCP or UDP

- Your own awesomely inventive protocol is not supported...

Tuesday, March 2, 2010

Service Naming

Canon MP780._ipp._tcp.local.

{

Domain

Protocol

Service Type
(Internet
Printing
Protocol)

Service Name

Tuesday, March 2, 2010

Publishing a Service

* NSNetService is used to publish services via Bonjour

NSNetService * service;

_service = [[NSNetService alloc] initWithDomain:@"”"”
type:@” ipp. tcp”
name:@”Canon MP780"
port:4721];

* Leaving domain blank implies “.local.”
* Leaving name blank will use the device’s iTunes name

Tuesday, March 2, 2010

Publishing a Service

* NSNetService is entirely asynchronous

// Set up delegate to receive callbacks
[service setDelegate:self];

[service publish];

* Always remember to unset the delegate in dealloc!

- (void)dealloc {
[service setDelegate:nil];
[service stop];
[service release];

[super dealloc];

Tuesday, March 2, 2010

NSNetService Delegate Methods

» Conflict resolution handled automatically

» Status is communicated to the delegate

— (void)netServiceWillPublish: (NSNetService *)sender

— (void)netServiceDidPublish: (NSNetService *)sender

— (void)netService: (NSNetService *)sender
didNotPublish: (NSDictionary *)errorDict

* errorDict is like an NSError - has two keys, one for error
domain and one for error code.

Tuesday, March 2, 2010

Finding a Service

* Applications register service names with local daemon which
handles responding to lookup queries

» Service discovery is completely independent of service
implementation

* Resolving a service gives you an address and a port
= Can also get NSStreams pointing to that location

Tuesday, March 2, 2010

Finding a Service

* NSNetServiceBrowser is used to search for services on the
network.

NSNetServiceBrowser * browser;

_browser = [[NSNetServiceBrowser alloc] init];

[browser setDelegate:self];
[browser searchForServicesOfType:@” ipp. tcp.”

inDomain:Q"”"];

Tuesday, March 2, 2010

NSNetServiceBrowser Delegate Methods

* NSNetServiceBrowser browsing is also asynchronous

* Delegate methods called as services come and go

(void)netServiceBrowserWillSearch: (NSNetServiceBrowser *)browser
(void)netServiceBrowserDidStopSearch: (NSNetServiceBrowser *)browser

(void)netServiceBrowser:
didNotSearch:

(void)netServiceBrowser:
didFindService:
moreComing:

(void)netServiceBrowser:
didRemoveService:
moreComing:

Tuesday, March 2, 2010

(NSNetServiceBrowser *)browser
(NSDictionary *)errorInfo

(NSNetServiceBrowser *)browser
(NSNetService *)service
(BOOL)more

(NSNetServiceBrowser *)browser
(NSNetService *)service
(BOOL)more

Service Resolution

Tuesday, March 2, 2010

Service Resolution

* NSNetServices found by NSNetServiceBrowser must have their
addresses resolved before use:

[netService setDelegate:self];
[netService resolveWithTimeout:5];

Tuesday, March 2, 2010

Service Resolution

* NSNetServices found by NSNetServiceBrowser must have their
addresses resolved before use:

[netService setDelegate:self];
[netService resolveWithTimeout:5];

« Status communicated aynschronously to delegate:

- (void)netService: (NSNetService *)sender
didNotResolve: (NSDictionary *)errorDict;
e Same errorDict as before.
— (void)netServiceDidResolveAddress: (NSNetService *)sender;

Tuesday, March 2, 2010

Service Resolution

* NSNetServices found by NSNetServiceBrowser must have their
addresses resolved before use:

[netService setDelegate:self];
[netService resolveWithTimeout:5];

« Status communicated aynschronously to delegate:

- (void)netService: (NSNetService *)sender
didNotResolve: (NSDictionary *)errorDict;
e Same errorDict as before.
— (void)netServiceDidResolveAddress: (NSNetService *)sender;

Tuesday, March 2, 2010

Service Resolution

* NSNetServices found by NSNetServiceBrowser must have their
addresses resolved before use:

[netService setDelegate:self];
[netService resolveWithTimeout:5];

« Status communicated aynschronously to delegate:

- (void)netService: (NSNetService *)sender
didNotResolve: (NSDictionary *)errorDict;
e Same errorDict as before.
— (void)netServiceDidResolveAddress: (NSNetService *)sender;

* Once a service has been resolved you can use the address
information to connect to it

Tuesday, March 2, 2010

Bonjour Service Publishing and

Searching Demo

Tuesday, March 2, 2010

NSStreams

Tuesday, March 2, 2010

Service Resolution

* NSNetService will generate NSStream instances for you

Tuesday, March 2, 2010

Service Resolution

* NSNetService will generate NSStream instances for you

NSInputStream *inputStream nil;
NSOutputStream *outputStream nil;

[netService getInputStream:&inputStream
outputStream: &outputStream];

Tuesday, March 2, 2010

What's an NSStream?

* Sort of like sockets, but without select

» State changes are asynchronously sent to the delegate

 Writes / Reads are still synchronous

* You can support multiple streams and still operate on a single
thread

* Device agnostic - we'll use sockets, but could easily be files,
memory locations, etc.

Tuesday, March 2, 2010

NSObject

A

NSStream

J

4 »

NSInputStream NSOutputStream

Tuesday, March 2, 2010

NSStream Class

* Opening a stream

[stream setDelegate:self];

[stream scheduleInRunLoop:[NSRunLoop currentRunLoop]
forMode:NSRunLoopCommonModes] ;

[stream open];

* Closing a stream

[stream close];

[stream removeFromRunLoop:[NSRunLoop currentRunLoop]
forMode:NSRunLoopCommonModes] ;

[stream setDelegate:nil];

Tuesday, March 2, 2010

What's a Run Loop?

* Easy event processing
- You've been using them, but you don't even know it!

[Events J bm

»

NSRunLoop

* Scheduling the NSStream on the NSRunLoop causes it to send
its events when that run loop spins.

Tuesday, March 2, 2010

Okay, what'’s a run mode?

* Run loops have an unbounded number of run loop modes.

* Events (sources, timers, etc) are scheduled to run only in certain
run loop modes.

» This allows you to block events from occurring during high-
feedback event loops

* For instance, UITrackingRunLoopMode is used for tracking
finger touches. Not servicing other sources here can be a huge
responsiveness win.

* NSRunLoopCommonModes includes the publicly defined
common modes (including tracking). You can also define your
own run loop mode to only service your events.

Tuesday, March 2, 2010

NSStream Delegate Call

» Just a single method

- (void)stream: (NSStream *)theStream

handleEvent: (NSStreamEvent)streamEvent

» Several different event types
- Some examples:

NSStreamEventOpenCompleted
NSStreamEventHasSpaceAvailable
NSStreamEventErrorOccurred

NSStreamEventEndEncountered

Tuesday, March 2, 2010

NSOutputStream

* Only one method you'll really use

- (NSInteger)write:(const uint8 t *)buffer

maxLength: (NSUInteger)length

e For instance:

// outputStream is an already opened NSOutputStream
// with space available.

const char *buff = “Hello World!"”;
NSUInteger bufflLen = strlen(buff);

NSInteger writtenLength =
[outputStream write:(const uint8 t *)buff
maxLength:strlen(buff)];

if (writtenLength != bufflLen) {
[NSException raise:@”"WriteFailure” format:@”"];

Tuesday, March 2, 2010

NSInputStream

* Two useful methods, but we'll focus on one

- (NSInteger)read: (uint8 t *)buffer
maxLength: (NSUInteger)length

e For instance:

// inputStream is an already opened NSInputStream
// with space available.

unit8 t buff[1024];
bzero(buff, sizeof(buff));
NSInteger readLength =
[inputStream read:buff
maxLength:sizeof (buff) - 1];
buff[readLength] = ‘\0’;
NSLog(@”"Read: %s”, (char *)buff);

Tuesday, March 2, 2010

Messaging with NSStream

Tuesday, March 2, 2010

GameKit

Discovery and Connectivity

Tuesday, March 2, 2010

GameKit

* Peer-to-Peer connectivity
- Abstracts away Bonjour and Stream creation

- Nearby (Bluetooth) & Online (Wifi) support

* In-Game Voice
« Facilitates voice communication between two devices

Tuesday, March 2, 2010

GameKit Classes

» GKPeerPickerController
- Presents Ul prompting user to search for peers

= Facilitates creation of GKSessions

* GKSession
- Manages streams of data between peers

- Allows sending to single peer, or broadcast to all

» GKVoiceChatService
- Manages audio between peers

- Controls volume, detecting whether peer or local user is
speaking

Tuesday, March 2, 2010

GKSession

* Manages discovery of peers
* Abstracts streaming and Bonjour code

- (1d)initWithSessionID:(NSString *)sessionID
displayName:(NSString *)name
sessionMode: (GKSessionMode)mode

typedef enum {
GKSessionModeServer,
GKSessionModeClient,
GKSessionModePeer

} GKSessionMode;

Tuesday, March 2, 2010

GKSession

* Properties include:
- displayName - Your name, as seen by your peers

- peerlD - unique ID, identifying your Session to your peers
- sessionlD - String used by your Application to filter peers

* Delegate methods:
- Notifies of state change of a peer’s sesssion

- Notifies of connection requests
= Notifies of errors with sessions or connections

Tuesday, March 2, 2010

GKSession - Sending & Receiving Data

 Send data to specific peers

- (BOOL)sendData: (NSData *)data toPeers: (NSArray *)peers
withDataMode: (GKSendDataMode)mode error: (NSError **)error;

» Send data to ALL connected peers

- (BOOL)sendDataToAllPeers: (NSData *)data withDataMode:
(GKSendDataMode)mode error: (NSError **)error;

* Delegate method to receive data:

- (void)receiveData: (NSData *)data fromPeer: (NSString *)peer
inSession: (GKSession *)session context:(void *)context;

Tuesday, March 2, 2010

GKPeerPickerController

* Provides Ul to connect to peer
* Allows user to pick between “Nearby” and “Online”

* Nearby
« Bluetooth communication

- Most of the work is handled for you under-the-hood

* Online
- Hands off responsibility to the application

- App builds or connects to server
= Associates users in server
- App is responsible for handling communication

Tuesday, March 2, 2010

Initiating a connection

// Allocate the PeerPickerController

GKPeerPickerController *peerPicker;
peerPicker = [[GKPeerPickerController alloc] init];

// Set up delegate to receive callbacks
peerPicker.delegate = self;

peerPicker.connectionMask =
GKPeerPickerConnectionTypeOnline |

GKPeerPickerConnectionTypeNearby;

// Display the Peer Picker
[peerPicker show];

Tuesday, March 2, 2010

Receiving a connection

* Return a session for the requested type

- (GKSession *)peerPickerController:
(GKPeerPickerController *)picker sessionForConnectionType:
(GKPeerPickerConnectionType)streamEvent {

return [[[GKSession alloc] initWithSessionID:nil
displayName:localName sessionMode:GKSessionModePeer]
autorelease];

* Accept connection from peer

- (GKSession *)session: (GKSession *)session
didReceiveConnectionRequestFromPeer: (NSString *)peerID {

[session acceptConnectionFromPeer:peerID error:nil];

Tuesday, March 2, 2010

GameKit demo

Tuesday, March 2, 2010

