
CS193P - Lecture 17
iPhone Application Development

Bonjour
NSStream
GameKit

1Tuesday, March 2, 2010

Announcements
• All Paparazzi assignments should be in!
• Work on your final projects

• Final exam is Thursday, 3/18
■ 12:15 - 3:15pm
■ Hewlett 201
■ We will work on schedule for demos

■ If you have any special requests, let us know

2Tuesday, March 2, 2010

Topics
• Bonjour

■ Automatic Configuration

• NSStream
■ Asynchronous communication

3Tuesday, March 2, 2010

Bonjour

4Tuesday, March 2, 2010

Bonjour
• Three main functions:

■ Automate address distribution and name mapping
■ Publish availability of a service
■ Discover available services

• Open protocol Apple submitted to IETF
■ www.zeroconf.org

5Tuesday, March 2, 2010

Bonjour
• Makes LANs self configuring

■ Requires no administration
■ Assign addresses without a DHCP server
■ Map names to addresses without a DNS server
■ Find services without a directory server

6Tuesday, March 2, 2010

Automatic Addressing
• Bonjour will pick a random address, see if it is in use

■ If it is not in use, it’s yours
■ If it is in use, try again

• Uses “.local.” as a virtual top-level domain
■ For example: iPhone3G.local.

7Tuesday, March 2, 2010

Advertising Services
• Applications provide a service name and port
• Follows same DNS specific-to-general model
• ServiceName._ServiceType._TransportProtocolName.Domain

■ Service Name is a human readable descriptive name
■ Maximum of 63 octets of UTF-8
■ All characters are allowed

8Tuesday, March 2, 2010

Advertising Services
• Applications provide a service name and port
• Follows same DNS specific-to-general model
• ServiceName._ServiceType._TransportProtocolName.Domain

■ Service Type is an IANA registered protocol name
■ Maximum of fourteen characters
■ Format of [a-z0-9]([a-z0-9\-]*[a-z0-9])?

9Tuesday, March 2, 2010

Advertising Services
• Applications provide a service name and port
• Follows same DNS specific-to-general model
• ServiceName._ServiceType._TransportProtocolName.Domain

■ Transport Protocol Name is either TCP or UDP
■ Your own awesomely inventive protocol is not supported...

10Tuesday, March 2, 2010

Service Naming

Canon MP780._ipp._tcp.local.

Service Name

Service Type
(Internet
Printing
Protocol)

Protocol

Domain

11Tuesday, March 2, 2010

Publishing a Service

• NSNetService is used to publish services via Bonjour

• Leaving domain blank implies “.local.”
• Leaving name blank will use the device’s iTunes name

NSNetService *_service;

_service = [[NSNetService alloc] initWithDomain:@””
 type:@”_ipp._tcp”
 name:@”Canon MP780”
 port:4721];

12Tuesday, March 2, 2010

Publishing a Service

• NSNetService is entirely asynchronous

• Always remember to unset the delegate in dealloc!

// Set up delegate to receive callbacks
[_service setDelegate:self];

[_service publish];

- (void)dealloc {
! [_service setDelegate:nil];
! [_service stop];
! [_service release];

! [super dealloc];
}

13Tuesday, March 2, 2010

NSNetService Delegate Methods
• Conflict resolution handled automatically

• Status is communicated to the delegate

- (void)netServiceWillPublish:(NSNetService *)sender

- (void)netService:(NSNetService *)sender
 didNotPublish:(NSDictionary *)errorDict

• errorDict is like an NSError - has two keys, one for error
domain and one for error code.

- (void)netServiceDidPublish:(NSNetService *)sender

14Tuesday, March 2, 2010

Finding a Service
• Applications register service names with local daemon which

handles responding to lookup queries
• Service discovery is completely independent of service

implementation
• Resolving a service gives you an address and a port

■ Can also get NSStreams pointing to that location

15Tuesday, March 2, 2010

Finding a Service
• NSNetServiceBrowser is used to search for services on the

network.

NSNetServiceBrowser *_browser;

 _browser = [[NSNetServiceBrowser alloc] init];

[_browser setDelegate:self];
[_browser searchForServicesOfType:@”_ipp._tcp.”
 inDomain:@””];

16Tuesday, March 2, 2010

NSNetServiceBrowser Delegate Methods
• NSNetServiceBrowser browsing is also asynchronous
• Delegate methods called as services come and go

- (void)netServiceBrowserWillSearch:(NSNetServiceBrowser *)browser
- (void)netServiceBrowserDidStopSearch:(NSNetServiceBrowser *)browser

- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didNotSearch:(NSDictionary *)errorInfo

- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didFindService:(NSNetService *)service
 moreComing:(BOOL)more

- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didRemoveService:(NSNetService *)service
 moreComing:(BOOL)more

17Tuesday, March 2, 2010

Service Resolution

18Tuesday, March 2, 2010

Service Resolution
• NSNetServices found by NSNetServiceBrowser must have their

addresses resolved before use:

[netService setDelegate:self];
[netService resolveWithTimeout:5];

18Tuesday, March 2, 2010

Service Resolution
• NSNetServices found by NSNetServiceBrowser must have their

addresses resolved before use:

• Status communicated aynschronously to delegate:

[netService setDelegate:self];
[netService resolveWithTimeout:5];

- (void)netService:(NSNetService *)sender
 didNotResolve:(NSDictionary *)errorDict;
• Same errorDict as before.

- (void)netServiceDidResolveAddress:(NSNetService *)sender;

18Tuesday, March 2, 2010

Service Resolution
• NSNetServices found by NSNetServiceBrowser must have their

addresses resolved before use:

• Status communicated aynschronously to delegate:

[netService setDelegate:self];
[netService resolveWithTimeout:5];

- (void)netService:(NSNetService *)sender
 didNotResolve:(NSDictionary *)errorDict;
• Same errorDict as before.

- (void)netServiceDidResolveAddress:(NSNetService *)sender;

18Tuesday, March 2, 2010

Service Resolution
• NSNetServices found by NSNetServiceBrowser must have their

addresses resolved before use:

• Status communicated aynschronously to delegate:

• Once a service has been resolved you can use the address
information to connect to it

[netService setDelegate:self];
[netService resolveWithTimeout:5];

- (void)netService:(NSNetService *)sender
 didNotResolve:(NSDictionary *)errorDict;
• Same errorDict as before.

- (void)netServiceDidResolveAddress:(NSNetService *)sender;

18Tuesday, March 2, 2010

Bonjour Service Publishing and
Searching Demo

19Tuesday, March 2, 2010

NSStreams

20Tuesday, March 2, 2010

Service Resolution
• NSNetService will generate NSStream instances for you

21Tuesday, March 2, 2010

Service Resolution
• NSNetService will generate NSStream instances for you

 NSInputStream *inputStream = nil;
 NSOutputStream *outputStream = nil;

[netService getInputStream:&inputStream
 outputStream:&outputStream];

21Tuesday, March 2, 2010

What’s an NSStream?
• Sort of like sockets, but without select

• State changes are asynchronously sent to the delegate

• Writes / Reads are still synchronous

• You can support multiple streams and still operate on a single
thread

• Device agnostic - we’ll use sockets, but could easily be files,
memory locations, etc.

22Tuesday, March 2, 2010

NSStream

NSObject

NSInputStream NSOutputStream

23Tuesday, March 2, 2010

NSStream Class
• Opening a stream

• Closing a stream

! [stream setDelegate:self];
! [stream scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSRunLoopCommonModes];
! [stream open];

! [stream close];
! [stream removeFromRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSRunLoopCommonModes];
! [stream setDelegate:nil];

24Tuesday, March 2, 2010

What’s a Run Loop?
• Easy event processing

■ You’ve been using them, but you don’t even know it!

• Scheduling the NSStream on the NSRunLoop causes it to send
its events when that run loop spins.

NSRunLoop

Events Timers

25Tuesday, March 2, 2010

Okay, what’s a run mode?
• Run loops have an unbounded number of run loop modes.

• Events (sources, timers, etc) are scheduled to run only in certain
run loop modes.

• This allows you to block events from occurring during high-
feedback event loops
■ For instance, UITrackingRunLoopMode is used for tracking

finger touches. Not servicing other sources here can be a huge
responsiveness win.

• NSRunLoopCommonModes includes the publicly defined
common modes (including tracking). You can also define your
own run loop mode to only service your events.

26Tuesday, March 2, 2010

NSStream Delegate Call
• Just a single method

• Several different event types
■ Some examples:

- (void)stream:(NSStream *)theStream

 handleEvent:(NSStreamEvent)streamEvent

NSStreamEventOpenCompleted

NSStreamEventHasSpaceAvailable

NSStreamEventErrorOccurred

NSStreamEventEndEncountered

27Tuesday, March 2, 2010

NSOutputStream
• Only one method you’ll really use

• For instance:

- (NSInteger)write:(const uint8_t *)buffer

 maxLength:(NSUInteger)length

// outputStream is an already opened NSOutputStream
// with space available.

const char *buff = “Hello World!”;
NSUInteger buffLen = strlen(buff);
NSInteger writtenLength =
 [outputStream write:(const uint8_t *)buff
 maxLength:strlen(buff)];
if (writtenLength != buffLen) {
 [NSException raise:@”WriteFailure” format:@””];
}

28Tuesday, March 2, 2010

NSInputStream
• Two useful methods, but we’ll focus on one

• For instance:

- (NSInteger)read:(uint8_t *)buffer

 maxLength:(NSUInteger)length

// inputStream is an already opened NSInputStream
// with space available.

unit8_t buff[1024];
bzero(buff, sizeof(buff));
NSInteger readLength =
 [inputStream read:buff
 maxLength:sizeof(buff) - 1];
buff[readLength] = ‘\0’;
NSLog(@”Read: %s”, (char *)buff);

29Tuesday, March 2, 2010

Messaging with NSStream

30Tuesday, March 2, 2010

GameKit

Discovery and Connectivity

31Tuesday, March 2, 2010

GameKit
• Peer-to-Peer connectivity

■ Abstracts away Bonjour and Stream creation
■ Nearby (Bluetooth) & Online (Wifi) support

• In-Game Voice
■ Facilitates voice communication between two devices

32Tuesday, March 2, 2010

GameKit Classes
• GKPeerPickerController

■ Presents UI prompting user to search for peers
■ Facilitates creation of GKSessions

• GKSession
■ Manages streams of data between peers
■ Allows sending to single peer, or broadcast to all

• GKVoiceChatService
■ Manages audio between peers
■ Controls volume, detecting whether peer or local user is

speaking

33Tuesday, March 2, 2010

GKSession
• Manages discovery of peers
• Abstracts streaming and Bonjour code

- (id)initWithSessionID:(NSString *)sessionID
 displayName:(NSString *)name
 sessionMode:(GKSessionMode)mode

typedef enum {
GKSessionModeServer,
GKSessionModeClient,
GKSessionModePeer

} GKSessionMode;

34Tuesday, March 2, 2010

GKSession
• Properties include:

■ displayName - Your name, as seen by your peers
■ peerID - unique ID, identifying your Session to your peers
■ sessionID - String used by your Application to filter peers

• Delegate methods:
■ Notifies of state change of a peer’s sesssion
■ Notifies of connection requests
■ Notifies of errors with sessions or connections

35Tuesday, March 2, 2010

GKSession - Sending & Receiving Data
• Send data to specific peers
- (BOOL)sendData:(NSData *)data toPeers:(NSArray *)peers
withDataMode:(GKSendDataMode)mode error:(NSError **)error;

• Send data to ALL connected peers
- (BOOL)sendDataToAllPeers:(NSData *)data withDataMode:
(GKSendDataMode)mode error:(NSError **)error;

• Delegate method to receive data:
- (void)receiveData:(NSData *)data fromPeer:(NSString *)peer
inSession:(GKSession *)session context:(void *)context;

36Tuesday, March 2, 2010

GKPeerPickerController
• Provides UI to connect to peer
• Allows user to pick between “Nearby” and “Online”

• Nearby
■ Bluetooth communication
■ Most of the work is handled for you under-the-hood

• Online
■ Hands off responsibility to the application
■ App builds or connects to server
■ Associates users in server
■ App is responsible for handling communication

37Tuesday, March 2, 2010

Initiating a connection

// Allocate the PeerPickerController
GKPeerPickerController *peerPicker;
peerPicker = [[GKPeerPickerController alloc] init];

// Set up delegate to receive callbacks
peerPicker.delegate = self;
peerPicker.connectionMask =

GKPeerPickerConnectionTypeOnline |
GKPeerPickerConnectionTypeNearby;

// Display the Peer Picker
[peerPicker show];

38Tuesday, March 2, 2010

• Return a session for the requested type

• Accept connection from peer

Receiving a connection

- (GKSession *)peerPickerController:
(GKPeerPickerController *)picker sessionForConnectionType:
(GKPeerPickerConnectionType)streamEvent {

return [[[GKSession alloc] initWithSessionID:nil
displayName:localName sessionMode:GKSessionModePeer]
autorelease];

}

- (GKSession *)session:(GKSession *)session
didReceiveConnectionRequestFromPeer:(NSString *)peerID {

[session acceptConnectionFromPeer:peerID error:nil];

}

39Tuesday, March 2, 2010

GameKit demo

40Tuesday, March 2, 2010

