
Stanford CS193p
Fall 2011

Developing Applications for iOS
Fall 2011

Stanford CS193p

Stanford CS193p
Fall 2011

Today
UITabBarController
Another “controller of controllers”
Mostly set up with ctrl-drag just like split view or navigation controller

UINavigationItem
Controlling what’s at top when a UIViewController gets pushed onto a UINavigationController

Blocks
Objective-C language feature for in-lining blocks of code
Foundation of multi-threaded support (GCD)

Stanford CS193p
Fall 2011

UITabBarController

Stanford CS193p
Fall 2011

UITabBarController
View Controller

View Controller

View Controller

Tab Bar
Controller

You control drag to
create these

connections in Xcode.

Doing so is setting
@property (nonatomic, strong) NSArray *viewControllers;

inside your UITabBarController.

Stanford CS193p
Fall 2011

UITabBarController
View Controller

View Controller

View Controller

Tab Bar
Controller

By default this is
the UIViewController’s

title property
(and no image) But usually you set

both of these in your
storyboard in Xcode.

Stanford CS193p
Fall 2011

UITabBarController
View Controller

View Controller

View Controller

Tab Bar
Controller

UIViewController’s tabBarItem property
(not a UITabBarController property)

can be used to set attributes for that VC’s tab.

- (void)somethingHappenedToCauseUsToNeedToShowABadgeValue
{
 self.tabBarItem.badgeValue = @“R”;
}

R

Stanford CS193p
Fall 2011

UITabBarController
View Controller

View Controller

View Controller

Tab Bar
Controller

View Controller

View Controller

View Controller

View Controller

What if there are
more than 4 View

Controllers?

Stanford CS193p
Fall 2011

UITabBarController
View Controller

View Controller

View Controller

Tab Bar
Controller

View Controller

View Controller

View Controller

View Controller
A More button appears.

More button brings up a
UI to let the user edit
which buttons appear

on bottom row

Stanford CS193p
Fall 2011

UITabBarController
View Controller

View Controller

View Controller

Tab Bar
Controller

View Controller

View Controller

View Controller

View Controller

All Happens Automatically

Stanford CS193p
Fall 2011

Combine?
Can you combine UINavigationController & UITabBarController?
Certainly. Quite common.
UINavigationController goes “inside” the UITabBarController.
Never the other way around.

Can you combine UITabBarController and UISplitViewController?
Less common.
The UITabBarController goes inside the UISplitViewController (Master or Detail).

Stanford CS193p
Fall 2011

Combine

Stanford CS193p
Fall 2011

UINavigationController
Modifying buttons and toolbar items in a navigation controller
You can set most of this up in Xcode by dragging items into your scene.
But you may want to add buttons or change buttons at run time too ...

UIViewController’s navigationItem property
@property (nonatomic, strong) UINavigationItem *navigationItem;
Think of navigationItem as a holder for things UINavigationController will need when that
 UIViewController appears on screen.

@property (nonatomic, copy) NSArray *leftBarButtonItems;
@property (nonatomic, strong) UIView *titleView;
@property (nonatomic, copy) NSArry *rightBarButtonItems;

// when this UIViewController is not on the top of the UINC stack:
@property (nonatomic, copy) UIBarButtonItem *backButtonItem;

These bar button items are not set via the navigationItem.
They are set via the toolbarItems property in UIViewController.

Stanford CS193p
Fall 2011

Blocks
What is a block?
A block of code (i.e. a sequence of statements inside {}).
Usually included “in-line” with the calling of method that is going to use the block of code.
Very smart about local variables, referenced objects, etc.

What does it look like?
Here’s an example of calling a method that takes a block as an argument.
[aDictionary enumerateKeysAndObjectsUsingBlock:^(id key, id value, BOOL *stop) {
 NSLog(@“value for key %@ is %@”, key, value);
 if ([@“ENOUGH” isEqualToString:key]) {
 *stop = YES;
 }
}];
This NSLog()s every key and value in aDictionary (but stops if the key is ENOUGH).

Blocks start with the magical character caret ^
Then it has (optional) arguments in parentheses, then {, then code, then }.

Stanford CS193p
Fall 2011

Blocks
Can use local variables declared before the block inside the block
double stopValue = 53.5;
[aDictionary enumerateKeysAndObjectsUsingBlock:^(id key, id value, BOOL *stop) {
 NSLog(@“value for key %@ is %@”, key, value);
 if ([@“ENOUGH” isEqualToString:key] || ([value doubleValue] == stopValue)) {
 *stop = YES;
 }
}];

But they are read only!
BOOL stoppedEarly = NO;
double stopValue = 53.5;
[aDictionary enumerateKeysAndObjectsUsingBlock:^(id key, id value, BOOL *stop) {
 NSLog(@“value for key %@ is %@”, key, value);
 if ([@“ENOUGH” isEqualToString:key] || ([value doubleValue] == stopValue)) {
 *stop = YES;
 stoppedEarly = YES; // ILLEGAL
 }
}];

Stanford CS193p
Fall 2011

Blocks
Unless you mark the local variable as __block
__block BOOL stoppedEarly = NO;
double stopValue = 53.5;
[aDictionary enumerateKeysAndObjectsUsingBlock:^(id key, id value, BOOL *stop) {
 NSLog(@“value for key %@ is %@”, key, value);
 if ([@“ENOUGH” isEqualToString:key] || ([value doubleValue] == stopValue)) {
 *stop = YES;
 stoppedEarly = YES; // this is legal now
 }
}];
if (stoppedEarly) NSLog(@“I stopped logging dictionary values early!”);

Or if the “variable” is an instance variable
But we only access instance variables (e.g. _display) in setters and getters.
So this is of minimal value to us.

Stanford CS193p
Fall 2011

Blocks
So what about objects which are messaged inside the block?
NSString *stopKey = [@“Enough” uppercaseString];
__block BOOL stoppedEarly = NO;
double stopValue = 53.5;
[aDictionary enumerateKeysAndObjectsUsingBlock:^(id key, id value, BOOL *stop) {
 NSLog(@“value for key %@ is %@”, key, value);
 if ([stopKey isEqualToString:key] || ([value doubleValue] == stopValue)) {
 *stop = YES;
 stoppedEarly = YES; // this is legal now
 }
}];
if (stoppedEarly) NSLog(@“I stopped logging dictionary values early!”);
stopKey will essentially have a strong pointer to it until the block goes out of scope
 or the block itself leaves the heap (i.e. no one points strongly to the block anymore).
Why does that matter?

Stanford CS193p
Fall 2011

Blocks
Imagine we added the following method to CalculatorBrain
- (void)addUnaryOperation:(NSString *)operation whichExecutesBlock:...;
This method adds another operation to the brain like sqrt which you get to specify the code for.
For now, we’ll not worry about the syntax for passing the block.
(but the mechanism for that is the same as for defining enumerateKeysAndObjectsUsingBlock:).

That block we pass in will not be executed until much later
i.e. it will be executed when that “operation” is pressed in some UI somewhere.

Example call of this ...
NSNumber *secret = [NSNumber numberWithDouble:42.0];
[brain addUnaryOperation:@“MoLtUaE” whichExecutesBlock:^(double operand) {
 return operand * [secret doubleValue];
}];
Imagine if secret were not automatically kept in the heap here.
What would happen later when this block executed (when the MoLtUaE operation was pressed)?
Bad things! Luckily, secret is automatically kept in the heap until block can’t be run anymore.

Stanford CS193p
Fall 2011

Blocks
Creating a “type” for a variable that can hold a block
Blocks are kind of like “objects” with an unusual syntax for declaring variables that hold them.
Usually if we are going to store a block in a variable, we typedef a type for that variable, e.g.,
typedef double (^unary_operation_t)(double op);
This declares a type called “unary_operation_t” for variables which can store a block.
 (specifically, a block which takes a double as its only argument and returns a double)
Then we could declare a variable, square, of this type and give it a value ...
unary_operation_t square;
square = ^(double operand) { // the value of the square variable is a block
 return operand * operand;
}
And then use the variable square like this ...
double squareOfFive = square(5.0); // squareOfFive would have the value 25.0 after this
(You don’t have to typedef, for example, the following is also a legal way to create square ...)
double (^square)(double op) = ^(double op) { return op * op; };

Stanford CS193p
Fall 2011

Blocks
We could then use the unary_operation_t to define a method
For example, addUnaryOperation:whichExecutesBlock:
We’d add this property to our CalculatorBrain ...
@property (nonatomic, strong) NSMutableDictionary *unaryOperations;
Then implement the method like this ...
typedef double (^unary_operation_t)(double op);
- (void)addUnaryOperation:(NSString *)op whichExecutesBlock:(unary_operation_t)opBlock {
 [self.unaryOperations setObject:opBlock forKey:op];
}

Note that the block can be treated somewhat like an object (e.g., adding it to a dictionary).
Later in our CalculatorBrain we could use an operation added with the method above like this ...
- (double)performOperation:(NSString *)operation
{
 unary_operation_t unaryOp = [self.unaryOperations objectForKey:operation];
 if (unaryOp) {
 self.operand = unaryOp(self.operand);
 }
 . . .
}

Stanford CS193p
Fall 2011

We don’t always typedef
When a block is an argument to a method and is used immediately, often there is no typedef.

Here is the declaration of the dictionary enumerating method we showed earlier ...
- (void)enumerateKeysAndObjectsUsingBlock:(void (^)(id key, id obj, BOOL *stop))block;

The syntax is exactly the same as the typedef except that the name of the typedef is not there.

For reference, here’s what a typedef for this argument would look like this ...
typedef void (^enumeratingBlock)(id key, id obj, BOOL *stop);
(i.e. the underlined part is not used in the method argument)

No “name” for the
type appears here.

Blocks

This (“block”) is the keyword for the argument
(e.g. the local variable name for the argument

inside the method implementation).

Stanford CS193p
Fall 2011

Blocks
Some shorthand allowed when defining a block
(“Defining” means you are writing the code between the {}.)
1. You do not have to declare the return type if it can be inferred from your code in the block.
2. If there are no arguments to the block, you do not need to have any parentheses.
Recall this code ...
NSNumber *secret = [NSNumber numberWithDouble:42.0];
[brain addUnaryOperation:@“MoLtUaE” whichExecutesBlock:^(double operand) {
 return operand * [secret doubleValue];
}]; No return type.

Inferred from the
return inside.

Stanford CS193p
Fall 2011

Blocks
Some shorthand allowed when defining a block
(“Defining” means you are writing the code between the {}.)
1. You do not have to declare the return type if it can be inferred from your code in the block.
2. If there are no arguments to the block, you do not need to have any parentheses.
Recall this code ...
NSNumber *secret = [NSNumber numberWithDouble:42.0];
[brain addUnaryOperation:@“MoLtUaE” whichExecutesBlock:^(double operand) {
 return operand * [secret doubleValue];
}];

Another example ...
[UIView animateWithDuration:5.0 animations:^{
 view.opacity = 0.5;
}]; No arguments to this block.

No need to say ^() { ... }.

Stanford CS193p
Fall 2011

Blocks
Memory Cycles (a bad thing)
What if you had the following property in a class?
@property (nonatomic, strong) NSArray *myBlocks; // array of blocks
And then tried to do the following in one of that class’s methods?
[self.myBlocks addObject:^() {
 [self doSomething];
}];
We said that all objects referenced inside a block will stay in the heap as long as the block does.
 (in other words, blocks keep a strong pointer to all objects referenced inside of them)
In this case, self is an object reference in this block.
Thus the block will have a strong pointer to self.
But notice that self also has a strong pointer to the block (through its myBlocks property)!

This is a serious problem.
Neither self nor the block can ever escape the heap now.
That’s because there will always be a strong pointer to both of them (each other’s pointer).
This is called a memory “cycle.”

Stanford CS193p
Fall 2011

Blocks
Memory Cycles Solution
You’ll recall that local variables are always strong.
That’s okay because when they go out of scope, they disappear, so the strong pointer goes away.
But there’s a way to declare that a local variable is weak. Here’s how ...
__weak MyClass *weakSelf = self;
[self.myBlocks addObject:^() {
 [weakSelf doSomething];
}];
This solves the problem because now the block only has a weak pointer to self.
 (self still has a strong pointer to the block, but that’s okay)
As long as someone in the universe has a strong pointer to this self, the block’s pointer is good.
And since the block will not exist if self does not exist (since myBlocks won’t exist), all is well!

If you are struggling to understand this, don’t worry, you will not have to create blocks that
 refer to self in any of your homework assignments this quarter.

Stanford CS193p
Fall 2011

Blocks
When do we use blocks in iOS?
Enumeration
View Animations (more on that later in the course)
Sorting (sort this thing using a block as the comparison method)
Notification (when something happens, execute this block)
Error handlers (if an error happens while doing this, execute this block)
Completion handlers (when you are done doing this, execute this block)

And a super-important use: Multithreading
With Grand Central Dispatch (GCD) API

Stanford CS193p
Fall 2011

Grand Central Dispatch
GCD is a C API
The basic idea is that you have queues of operations
The operations are specified using blocks.
Most queues run their operations serially (a true “queue”).
We’re only going to talk about serial queues today.

The system runs operations from queues in separate threads
Though there is no guarantee about how/when this will happen.
All you know is that your queue’s operations will get run (in order) at some point.
The good thing is that if your operation blocks, only that queue will block.
Other queues (like the main queue, where UI is happening) will continue to run.

So how can we use this to our advantage?
Get blocking activity (e.g. network) out of our user-interface (main) thread.
Do time-consuming activity concurrently in another thread.

Stanford CS193p
Fall 2011

Grand Central Dispatch
Important functions in this C API
Creating and releasing queues
dispatch_queue_t dispatch_queue_create(const char *label, NULL); // serial queue
void dispatch_release(dispatch_queue_t);

Putting blocks in the queue
typedef void (^dispatch_block_t)(void);
void dispatch_async(dispatch_queue_t queue, dispatch_block_t block);

Getting the current or main queue
dispatch_queue_t dispatch_get_current_queue();
void dispatch_queue_retain(dispatch_queue_t); // keep it in the heap until dispatch_release

dispatch_queue_t dispatch_get_main_queue();

Stanford CS193p
Fall 2011

What does it look like to call these?
Example ... assume we fetched an image from the network (this would be slow).
- (void)viewWillAppear:(BOOL)animated
{

Grand Central Dispatch

 NSData *imageData = [NSData dataWithContentsOfURL:networkURL];
 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;
}

Stanford CS193p
Fall 2011

What does it look like to call these?
Example ... assume we fetched an image from the network (this would be slow).
- (void)viewWillAppear:(BOOL)animated
{

Grand Central Dispatch

 NSData *imageData = [NSData dataWithContentsOfURL:networkURL];
 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;

}

Stanford CS193p
Fall 2011

What does it look like to call these?
Example ... assume we fetched an image from the network (this would be slow).
- (void)viewWillAppear:(BOOL)animated
{

Grand Central Dispatch

 NSData *imageData = [NSData dataWithContentsOfURL:networkURL];
 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;

}

dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);

Stanford CS193p
Fall 2011

What does it look like to call these?
Example ... assume we fetched an image from the network (this would be slow).
- (void)viewWillAppear:(BOOL)animated
{

Grand Central Dispatch

 NSData *imageData = [NSData dataWithContentsOfURL:networkURL];
 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;

}

dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);
dispatch_async(downloadQueue, ^{

});

Stanford CS193p
Fall 2011

What does it look like to call these?
Example ... assume we fetched an image from the network (this would be slow).
- (void)viewWillAppear:(BOOL)animated
{

Grand Central Dispatch

 NSData *imageData = [NSData dataWithContentsOfURL:networkURL];
 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;

}

dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);
dispatch_async(downloadQueue, ^{

});

Problem! UIKit calls can only happen in the main thread!

Stanford CS193p
Fall 2011

What does it look like to call these?
Example ... assume we fetched an image from the network (this would be slow).
- (void)viewWillAppear:(BOOL)animated
{

Grand Central Dispatch

 NSData *imageData = [NSData dataWithContentsOfURL:networkURL];

 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;

}

dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);
dispatch_async(downloadQueue, ^{

});

Stanford CS193p
Fall 2011

What does it look like to call these?
Example ... assume we fetched an image from the network (this would be slow).
- (void)viewWillAppear:(BOOL)animated
{

Grand Central Dispatch

 NSData *imageData = [NSData dataWithContentsOfURL:networkURL];

 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;

}

dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);
dispatch_async(downloadQueue, ^{

});

dispatch_async(dispatch_get_main_queue(), ^{

});

Stanford CS193p
Fall 2011

What does it look like to call these?
Example ... assume we fetched an image from the network (this would be slow).
- (void)viewWillAppear:(BOOL)animated
{

Grand Central Dispatch

 NSData *imageData = [NSData dataWithContentsOfURL:networkURL];

 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;

}

dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);
dispatch_async(downloadQueue, ^{

});

Problem! This “leaks” the downloadQueue in the heap. We have to dispatch_release it.

dispatch_async(dispatch_get_main_queue(), ^{

});

Stanford CS193p
Fall 2011

What does it look like to call these?
Example ... assume we fetched an image from the network (this would be slow).
- (void)viewWillAppear:(BOOL)animated
{

Grand Central Dispatch

 NSData *imageData = [NSData dataWithContentsOfURL:networkURL];

 UIImage *image = [UIImage imageWithData:imageData];
 self.imageView.image = image;
 self.imageView.frame = CGRectMake(0, 0, image.size.width, image.size.height);
 self.scrollView.contentSize = image.size;

}

dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);
dispatch_async(downloadQueue, ^{

});

dispatch_async(dispatch_get_main_queue(), ^{

});

 dispatch_release(downloadQueue);

Don’t worry, it won’t remove the queue from the heap until all blocks have been processed.

Stanford CS193p
Fall 2011

Demo
Table View
Another example

Blocks
Using a block-based API (searching for objects in an array)

GCD
Using blocks and GCD to improve user-interface responsiveness

Spinner (time permitting)
How to show a little spinning wheel when the user is waiting for something to happen

UITabBarController (time permitting)
Just going to briefly show how to hook it up in Xcode.

Stanford CS193p
Fall 2011

Coming Up
Next Lecture
Persistence
Other stuff :)

Section
No section this week.

