Stanford CS193p

Developing Applications for iOS
Fall 2011

Today

® UITabBarController

Another “controller of controllers”
Mostly set up with ctrl-drag just like split view or navigation controller

@ UINavigationltem
Controlling what's at top when a UIViewController gets pushed onto a UINavigationController

@ Blocks

Objective-C language feature for in-lining blocks of code
Foundation of multi-threaded support (GCD)

UITabBarController

11:20 AM od = 11:21 AM

00:!0.0

14

Cupertino
v nours 19 mins

1 16

When Timer Ends 1Time Pac: >

UITabBarController

¥y View Controller

Tab Bar

» View Controller
Controller eW LOnTrote

% View Controller

You control drag to
create these
connections in Xcode.

When Timer Ends Sleep iPod >

Doing so is setting
@property (nonatomic, strong) NSArray xviewControllers;
inside your UITabBarController.

UITabBarController

¥y View Controller

Tab Bar

» View Controller
Controller eW LOnTrote

% View Controller

By default this is

When Timer Ends ~ Sleep iPod » the UIViewControllers

title property

(and no image) But usually you set
both of these in your
storyboard in Xcode.

UITabBarController

¥y View Controller

Tab Bar

» View Controller
Controller W LONTrotie

% View Controller

UIViewControllers tabBarItem property
(not a UITabBarController property)
When Timer Ends Sleep iPod > can be used to set attributes for that VCs tab.

— (void)somethingHappenedToCauseUsToNeedToShowABadgeValue

{
self.tabBarItem.badgeValue = @“R";

World Clock Alarm E\»Iu;;\‘.'\}'.;]‘: Timer

No Service 1:27 AM #

M M Q

Featured Most Viewed Bookmarks

2 x O

Most Recent Top Rated History

%" M M Q [eee

" Featured Most Viewed Bookmarks Search More

g i _'. -:' II_ : . Ii}:ll II:_::'.I-"F iH
G0 LT ' J stanford €S193p -
b o hﬁ A e i (72011

T —— 1:27 AM z View Controller

View Controller

W e M Q

Most Viewed Bookmarks Search

2 x O

Most Recent Top Rated History

View Controller

View Controller

View Controller

View Conftroller

%" M

Featured Most Viewed Bookmarks
: - -

IIl il 3 e 2 — "'
g eT 1 B
e e “r:,"l.:!..']

View Controller

. €5193
= Fall 2011

-
g

T —— 1:27 AM z View Controller

View Controller

W e M Q

Most Viewed Bookmarks Search

*, O
Most Recent Top Rat4 / /ﬁatory

View Controller

View Controller

View Controller

View Conftroller

M M Q [ees

.‘.-a Featured Most Viewed Bookmarks Search
3 L T) e | R

View Controller

.1_
Ao, o

Combine?

@ Can you combine UINavigationController & UITabBarController?

Certainly. Quite common.

UINavigationController goes “inside” the UITabBarController.
Never the other way around.

@ Can you combine UlTabBarController and UISplitViewController?

Less common.
The UITabBarController goes inside the UISplitViewController (Master or Detail).

Playlists

Combine

ngerlings 3

ew Bird

Fi

1Q

Flight of the Conchords
Flight of the Conchords

Flyin' Shoes

Townes Van Zandt

nd Opportunity

1001

Frie

Frontin' On Debra (DJ
Beck, Jay-Z & Pharrell Willian

Fulfillingness' First Fi...

Stevie Wondet

Artists Albums Podcasts

FXSCS=TTOTMOO >

—_— =
- =

C1LnPO VO

<
~

-

-
-

-

=+ N < X

iStanford

Stanford University

WO W W W 9 reviews

|INSTALLED

iStanford is Stanford University in the palm of your
hand.

Search the Stanford directory, search campus map,
find and bookmark courses, and get scores,
schedules, and news for all Stanford varsity
athletics teams... All from your iPhone or iPod
Touch!

Features:

- Search for buildings / places on campus, and use
GPS to find your location

- Search for students, faculty or anybody in the
Stanford directory. Tap to call/email. You can even
add them to your contacts on your phone!

- Search for classes, find out where and when
they're offered, and tap to call or email the

(1)

Featured Categories Top 25 Search Updates

UINavigationController

@ Modifying buttons and toolbar items in a navigation controller

You can set most of this up in Xcode by dragging items info your scene.
But you may want to add buttons or change buttons at run time too ..

@ UIViewControllers navigationItem property
@property (nonatomic, strong) UINavigationItem *xnavigationItem;
Think of navigationItem as a holder for things UINavigationController will need when that

UIViewController appears on screen.

@property (nonatomic, copy) NSArray xleftBarButtonItems;

@property (nonatomic, strong) UIView *xtitleView; —
@property (nonatomic, copy) NSArry xrightBarButtonItems;

// when this UIViewController is not on the top of the UINC stack:
@property (nonatomic, copy) UIBarButtonItem xbackButtonItem;

These bar button items are not set via the navigationItem. S
They are set via the toolbarItems property in UIViewCont roller.j

Blocks

® What is a block?

A block of code (i.e. a sequence of statements inside {}).
Usually included “in-line” with the calling of method that is going to use the block of code.
Very smart about local variables, referenced objects, etc.

® What does it look like?

Heres an example of calling a method that takes a block as an argument.
[aDictionary enumerateKeysAndObjectsUsingBlock:”~(id key, id value, BOOL xstop) {
NSLog(@“value for key %@ is %@"”, key, value);
if ([@“ENOUGH” isEqualToString:keyl) {
*xstop = YES;
'
Al

This NSLog()s every key and value in aDictionary (but stops if the key is ENOUGH).

@ Blocks start with the magical character caret
Then it has (optional) arguments in parentheses, then {, then code, then }.

Blocks

@ Can use local variables declared before the block inside the block
double stopValue = 53.5%
[aDictionary enumerateKeysAndObjectsUsingBlock:”~(id key, id value, BOOL xstop) 1
NSLog(@“value for key %@ is %@”, key, value);
if ([@“ENOUGH” isEqualToString:key] || ([value doubleValue] == stopValue)) {
*xstop = YES;

+
i i

@ But they are read only!
BOOL stoppedEarly = NO;
double stopValue = 53.5;
[aDictionary enumerateKeysAndObjectsUsingBlock:”~(id key, id value, BOOL xstop) {
NSLog(@“value for key %@ is %@”, key, value);

if ([@“ENOUGH” isEqualToString:key] || ([value doubleValue] == stopValue)) {
kstop = YES;

Blocks

@ Unless you mark the local variable as _ block
__block BOOL stoppedEarly = NO;
double stopValue = 53.5;
[aDictionary enumerateKeysAndObjectsUsingBlock:~(id key, id value, BOOL xstop) {
NSLog(@“value for key %@ is %@”, key, value);
if ([@“ENOUGH” isEqualToString:key] || ([value doubleValue] == stopValue)) {
*xstop = YES;
stoppedEarly = YES; // this is legal now

¥
b2
if (stoppedEarly) NSLog(@“I stopped logging dictionary values early!”);

® Or if the "variable” is an instance variable

But we only access instance variables (e.g. _display) in setters and getters.
So this is of minimal value tfo us.

Blocks

@ So what about objects which are messaged inside the block?

NSString xstopKey = [@“Enough” uppercaseStringl;
__block BOOL stoppedEarly = NO;
double stopValue = 53.5;
[aDictionary enumerateKeysAndObjectsUsingBlock:~(id key, id value, BOOL xstop) {
NSLog(@“value for key %@ is %@”, key, value);
if ([stopKey isEqualToString:key] || ([value doubleValue] == stopValue)) A
xstop = YES;
stoppedEarly = YES; // this is legal now

¥
if (stoppedEarly) NSLog(@“I stopped logging dictionary values early!”);

stopKey will essentially have a strong pointer to it until the block goes out of scope

or the block itself leaves the heap (i.e. no one points strongly to the block anymore).
Why does that matter?

Blocks

@ Imagine we added the following method to CalculatorBrain
— (void)addUnaryOperation: (NSString *)operation whichExecutesBlock:...;
This method adds another operation to the brain like sqrt which you get fo specify the code for.
For now, we'll not worry about the syntax for passing the block.
(but the mechanism for that is the same as for defining enumerateKeysAndObjectsUsingBlock:).

@ That block we pass in will not be executed until much later
i.e. it will be executed when that “operation” is pressed in some UI somewhere.

@ Example call of this ...
NSNumber xsecret = [NSNumber numberWithDouble:42.0];
[brain addUnaryOperation:@“MoLtUaE” whichExecutesBlock:”~(double operand) {
return operand *x [secret doubleValue];
H;
Imagine if secret were not automatically kept in the heap here.
What would happen later when this block executed (when the MoLtUaE operation was pressed)?
Bad things! Luckily, secret is automatically kept in the heap until block cant be run anymore.

Blocks

@ Creating a "type” for a variable that can hold a block

Blocks are kind of like “objects” with an unusual syntax for declaring variables that hold them.
Usually if we are going to store a block in a variable, we typedef a type for that variable, e.g.,
typedef double (~unary_operation_t) (double op);
This declares a type called “"unary_operation_t" for variables which can store a block.

(specifically, a block which takes a double as its only argument and returns a double)
Then we could declare a variable, square, of this type and give it a value ..
unary_operation_t square;
square = ~(double operand) { // the value of the square variable is a block

return operand *x operand;

¥

And then use the variable square like this ...

double squareOfFive = square(5.0); // squareOfFive would have the value 25.0 after this
(You dont have to typedef, for example, the following is also a legal way to create square ...)
double (”~square) (double op) = ~(double op) { return op * op; };

Blocks

@ We could then use the unary_operation_t to define a method
For example, addUnaryOperation:whichExecutesBlock:
Wed add this property to our CalculatorBrain ..
@property (nonatomic, strong) NSMutableDictionary s*unaryOperations;
Then |mplemen’r ’rhe method like this ..
def doubl nary_operation_ T\(iouble op);
= (void)addUnaryOperatlon.(NSStrlng x)op whichExecutesBlock: (unary_operation_t)opBlock A{

[self.unaryOperations setObject:opBlock forKey:opl;
I3

Note that the block can be treated somewhat like an object (e.g., adding it to a dictionary).

Later in our CalculatorBrain we could use an operation added with the method above like this ..

— (double)performOperation: (NSString *)operation

{
unary_operation_t unaryOp = [self.unaryOperations objectForKey:operationl];
if (unaryOp) {
self.operand = unaryOp(self.operand);

}

Blocks

® We dont always typedef

When a block is an argument to a method and is used immediately, often there is no typedef.

Here is the declaration of the dictionary enumerating method we showed earlier ...
— (void)enumerateKeysAndObjectsUsingBlock: (void (”)(id key, id obj, BOOL xstop))block;

The syntax is exactly the same as the typedef except that fhe name oF ’rhe typedef i§| not there.

For reference, heres what a typedef for this argument would look like this ...
typedef void (~enumeratingBlock) (id key, id obj, BOOL xstop);

(i.e. the underlined part is not used in the method argument)

(This (“block”) is the kiyword for the argumen’r\
(e.g- the local variable name for the argument
\ inside the method implementation). 5

Blocks

® Some shorthand allowed when defining a block

("Defining” means you are writing the code between the {}.)
1. You do not have to declare the return type if it can be inferred from your code in the block.

2. If there are no arguments fo the block, you do not need to have any parentheses.

Recall this code ...
NSNumber xsecret = [NSNumber numberWithDouble:42.0];
[brain addUnaryOperation:@“MoLtUaE” whichExecutesBlock:”(double operand) {

return operand *x [secret doubleValue];

R

Blocks

® Some shorthand allowed when defining a block
("Defining” means you are writing the code between the {}.)
1. You do not have to declare the return type if it can be inferred from your code in the block.
2. If there are no arguments to the block, you do not need fo have any parentheses.
Recall this code ...
NSNumber xsecret = [NSNumber numberWithDouble:42.0];
[brain addUnaryOperation:@“MoLtUaE” whichExecutesBlock:”(double operand) A

return operand *x [secret doubleValue];

I3
@ Another example ...

[UIView animateWithDuration:5.0 animations:”{
view.opacity = 0.5;

s No arguments to this block.
No need to say ~() { .. I.

Blocks

@ Memory Cycles (a bad thing)
What if you had the following property in a class?
@property (nonatomic, strong) NSArray xmyBlocks; // array of blocks
And then tried to do the following in one of that classs methods?
[self.myBlocks addObject:~() {
[self doSomething];
H;
We said that all objects referenced inside a block will stay in the heap as long as the block does.
(in other words, blocks keep a strong pointer to all objects referenced inside of them)
In this case, self is an object reference in this block.
Thus the block will have a strong pointer to self.
But notice that self also has a strong pointer to the block (through its myBlocks property)!

Neither self nor the block can ever escape the heap now.
Thats because there will always be a strong pointer to both of them (each others pointer).
This is called a memory “cycle.’

Blocks

@ Memory Cycles Solution

You'll recall that local variables are always strong.
That's okay because when they go out of scope, they disappear, so the strong pointer goes away.
But theres a way to declare that a local variable is weak. Heres how ...
__weak MyClass xweakSelf = self;
[self.myBlocks addObject:"~() {
[weakSelf doSomething];

-
This solves the problem because now the block only has a weak pointer to self.

(self still has a strong pointer to the block, but thats okay)
As long as someone in the universe has a strong pointer to this self, the block’s pointer is good.
And since the block will not exist if self does not exist (since myBlocks wont exist), all is well!

If you are struggling to understand this, dont worry, you will not have to create blocks that
refer to self in any of your homework assignments this quarter.

Blocks

@ When do we use blocks in i0S?
Enumeration
View Animations (more on that later in the course)
Sorting (sort this thing using a block as the comparison method)
Notification (when something happens, execute this block)
Error handlers (if an error happens while doing this, execute this block)
Completion handlers (when you are done doing this, execute this block)

@ And a super-important use: Multithreading
With Grand Central Dispatch (GCD) API

Grand Central Dispatch

® GCD is a C API

® The basic idea is that you have queues of operations
The operations are specified using blocks.
Most queues run their operations serially (a true "queue”).
We're only going to talk about serial queues today.

@ The system runs operations from queues in separate threads
Though there is no guarantee about how/when this will happen.
All you know is that your queues operations will get run (in order) at some point.
The good thing is that if your operation blocks, only that queue will block.
Other queues (like the main queue, where Ul is happening) will continue to run.

@ So how can we use this to our advantage?

Get blocking activity (e.g. network) out of our user-interface (main) thread.
Do time-consuming activity concurrently in another thread.

Grand Central Dispatch

@ Important functions in this C API
Creating and releasing queues
dispatch_queue_t dispatch_queue_create(const char xlabel, NULL); // serial queue
void dispatch_release(dispatch_queue_t);

Putting blocks in the queue
typedef void (~dispatch_block_t)(void);
void dispatch_async(dispatch_queue_t queue, dispatch_block t block);

Getting the current or main queue
dispatch_queue_t dispatch_get_current_queue();

void dispatch_queue_retain(dispatch_queue_t); // keep it in the heap until dispatch_release

dispatch_queue_t dispatch_get_main_queue();

Grand Central Dispatch

® What does it look like to call these?

Example ... assume we fetched an image from the network (this would be slow).

— (void)viewWillAppear: (BOOL)animated

{
NSData *ximageData = [NSData dataWithContentsOfURL:networkURL];

UIImage *ximage = [UIImage imageWithData:imageDatal];

self.1lmageView.image = image;

self.imageView.frame = CGRectMake(@, 0, image.size.width, image.size.height);
self.scrollView.contentSize = image.size;

Grand Central Dispatch

® What does it look like to call these?

Example ... assume we fetched an image from the network (this would be slow).

— (void)viewWillAppear: (BOOL)animated
{

NSData *ximageData = [NSData dataWithContentsOfURL:networkURL];

UIImage *ximage = [UIImage imageWithData:imageDatal;

self.1imageView.1image = image;

self.imageView.frame = CGRectMake(@, 0, image.size.width, image.size.height);
selT.scroliView. contentStzer=wimage.s1ze;

Grand Central Dispatch

® What does it look like to call these?

Example ... assume we fetched an image from the network (this would be slow).

— (void)viewWillAppear: (BOOL)animated
{

dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);

NSData *ximageData = [NSData dataWithContentsOfURL:networkURL];

UIImage *ximage = [UIImage imageWithData:imageDatal;

self.1imageView.1image = image;

self.imageView.frame = CGRectMake(@, 0, image.size.width, image.size.height);
selT.scroliView. contentStzer=wimage.s1ze;

Grand Central Dispatch

® What does it look like to call these?

Example ... assume we fetched an image from the network (this would be slow).
— (void)viewWillAppear: (BOOL)animated
{
dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);
dispatch_async(downloadQueue, ~{
NSData *ximageData = [NSData dataWithContentsOfURL:networkURL];
UIImage *ximage = [UIImage imageWithData:imageDatal;
self.1imageView.1image = image;
self.imageView.frame = CGRectMake(@, 0, image.size.width, image.size.height);
selT.scroliView. contentStzer=wimage.s1ze;

Grand Central Dispatch

® What does it look like to call these?

Example ... assume we fetched an image from the network (this would be slow).

— (void)viewWillAppear: (BOOL)animated
{

dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);
dispatch_async(downloadQueue, ~{

NSData *ximageData = [NSData dataWithContentsOfURL:networkURL];

UIImage *ximage = [UIImage imageWithData:imageDatal;

self.1imageView.1image = image;

self.imageView.frame = CGRectMake(@, 0, image.size.width, image.size.height);
selT.scroliView. contentStzer=wimage.s1ze;

UIKit calls can only happen in the main thread!

Grand Central Dispatch

® What does it look like to call these?

Example ... assume we fetched an image from the network (this would be slow).

— (void)viewWillAppear: (BOOL)animated
{

dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);
dispatch_async(downloadQueue, ~{

NSData *ximageData = [NSData dataWithContentsOfURL:networkURL];

UIImage *ximage = [UIImage imageWithData:imageDatal];

self.1imageView.1mage = 1image;

self.imageView.frame = CGRectMake(@, 0, image.size.width, image.size.height);
self.scrollView.contentSize = image.size;

Grand Central Dispatch

® What does it look like to call these?

Example ... assume we fetched an image from the network (this would be slow).
— (void)viewWillAppear: (BOOL)animated
{
dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);
dispatch_async(downloadQueue, ~{
NSData *ximageData = [NSData dataWithContentsOfURL:networkURL];
dispatch_async(dispatch_get_main_queue(), ™1
UIImage ximage = [UIImage imageWithData:imageDatal];
self.imageView. image = image;
self.imageView.frame = CGRectMake(®, 0, image.size.width, image.size.height);
self.scrollView.contentSize = 1mage.size;

});

Grand Central Dispatch

® What does it look like to call these?

Example ... assume we fetched an image from the network (this would be slow).
— (void)viewWillAppear: (BOOL)animated

{
dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);
dispatch_async(downloadQueue, ~{
NSData *ximageData = [NSData dataWithContentsOfURL:networkURL];
dispatch_async(dispatch_get_main_queue(), ™1
UIImage ximage = [UIImage imageWithData:imageDatal];
self.imageView. image = image;
self.imageView.frame = CGRectMake(®, 0, image.size.width, image.size.height);
i self.scrollView.contentSize = 1mage.size;
4l
y

This “leaks” the downloadQueue in the heap. We have to dispatch_release it.

Grand Central Dispatch

® What does it look like to call these?

Example ... assume we fetched an image from the network (this would be slow).
— (void)viewWillAppear: (BOOL)animated
{
dispatch_queue_t downloadQueue = dispatch_queue_create(“image downloader”, NULL);
dispatch_async(downloadQueue, ~{
NSData *ximageData = [NSData dataWithContentsOfURL:networkURL];
dispatch_async(dispatch_get_main_queue(), ™1
UIImage ximage = [UIImage imageWithData:imageDatal];
self.imageView. image = image;
self.imageView.frame = CGRectMake(®, 0, image.size.width, image.size.height);
self.scrollView.contentSize = 1mage.size;

feDrs
2

dispatch_release(downloadQueue);

}

Dont worry, it wont remove the queue from the heap until all blocks have been processed.

Demo

@ Table View
Another example

@ Blocks
Using a block-based API (searching for objects in an array)

@ GCD

Using blocks and GCD to improve user-interface responsiveness

@ Spinner (time permitting)
How to show a little spinning wheel when the user is waiting for something to happen

@ UITabBarController (time permitting)
Just going to briefly show how to hook it up in Xcode.

Coming Up

® Next Lecture
Persistence
Other stuff :)

@ Section
No section this week.

