
Stanford CS193p
Developing Applications for iPhone 4, iPod Touch, & iPad

Fall 2010

Stanford
CS193p

Fall 2010

Today: Grab Bag
UIView Animation
One more thing: animating view hierarchy changes

UISegmentedControl
Compact “radio button”-like control

Core Motion
Accelerometer and Gyro inputs

Alerts
UIAlertView & UIActionSheet
NSTimer

Stanford
CS193p

Fall 2010

View Animation
Animating changes to the view hierarchy is slightly different
+ (void)transitionFromView:(UIView *)fromView
 toView:(UIView *)toView
 duration:(NSTimeInterval)duration
 options:(UIViewAnimationOptions)options
 completion:(void (^)(BOOL finished))completion;

Include UIViewAnimationOptionShowHideTransitionViews if you want hidden property to be set.
Otherwise it will actually remove fromView from the view hierarchy and add toView.

Or you can do the removing/adding/hiding yourself in a block with ...
+ (void)transitionWithView:(UIView *)view
 duration:(NSTimeInterval)duration
 options:(UIViewAnimationOptions)options
 animations:(void (^)(void))animations
 completion:(void (^)(BOOL finished))completion;

Stanford
CS193p

Fall 2010

Core Motion
API to access motion sensing hardware on your device

Two primary inputs: Accelerometer and Gyro
Currently only iPhone4 and newest iPod Touch have a gyro.

Primary class used to get input is CMMotionManager
Create with alloc/init, but only one instance allowed per application.
It is a “global resource,” so getting one via an application delegate method or class method is okay.

Usage
1. Check to see what hardware is available.
2. Start the sampling going and poll the motion manager for the latest sample it has.
... or ...
1. Check to see what hardware is available.
2. Set the rate at which you want data to be reported from the hardware,
3. Register a block (and a dispatch queue to run it on) each time a sample is taken. Stanford

CS193p
Fall 2010

Core Motion
Checking availability of hardware sensors
@property (readonly) BOOL {accelerometer,gyro,deviceMotion}Available;
The “device motion” is a combination of accelerometer and gyro.
We’ll talk more about that in a couple of slides.

Starting the hardware sensors collecting data
You only need to do this if you are going to poll for data.
- (void)start{Accelerometer,Gyro,DeviceMotion}Updates;

Is the hardware currently collecting data?
@property (readonly) BOOL {accelerometer,gyro,deviceMotion}Active;

Stop the hardware collecting data
It is a performance hit to be collecting data, so stop during times you don’t need the data.
- (void)stop{Accelerometer,Gyro,DeviceMotion}Updates;

Stanford
CS193p

Fall 2010

Core Motion
Actually polling the data

Stanford
CS193p

Fall 2010

@property (readonly) CMAccelerometerData *accelerometerData;
CMAccelerometerData object provides @property (readonly) CMAcceleration acceleration;
typedef struct { double x; double y; double z; } CMAcceleration; // x, y, z in “g”
This raw data includes acceleration due to gravity.

@property (readonly) CMGyroData *gyroData;
CMGyroData object has one property @property (readonly) CMRotationRate rotationRate;
typedef struct { double x; double y; double z; } CMRotationRate; // x, y, z in radians/second
Sign of rotation rate follows right hand rule. This raw data will be biased.

@property (readonly) CMDeviceMotion *deviceMotion;
CMDeviceMotion is an intelligent combination of gyro and acceleration.
If you have both devices, you can report better information about each.

CMDeviceMotion
Acceleration Data in CMDeviceMotion
@property (readonly) CMAcceleration gravity;
@property (readonly) CMAcceleration userAcceleration; // gravity factored out using gyro
typedef struct { double x; double y; double z; } CMAcceleration; // x, y, z in “g”

Rotation Data in CMDeviceMotion
@property CMRotationRate rotationRate; // bias removed from raw data using accelerometer
typedef struct { double x; double y; double z; } CMRotationRate; // x, y, z in radians/second

@property CMAttitude *attitude; // device’s attitude (orientation) in 3D space

@interface CMAttitude : NSObject // roll, pitch and yaw are in radians
@property (readonly) double roll; // around longitudinal axis passing through top/bottom
@property (readonly) double pitch; // around lateral axis passing through sides
@property (readonly) double yaw; // around axis with origin at center of gravity and
 // perpendicular to screen directed down
 // other mathematical representations of the device’s attitude also available
@end

Stanford
CS193p

Fall 2010

Core Motion
Registering a block to receive Accelerometer data
- (void)startAccelerometerUpdatesToQueue:(NSOperationQueue *)queue
 withHandler:(CMAccelerometerHandler)handler;

typedef void (^CMAccelerationHandler)(CMAccelerometerData *data, NSError *error);
We haven’t talked about NSOperationQueue, but think of it as an OO dispatch_queue_t.
There is also a corresponding OO version of blocks (sort of) called NSOperation.

Registering a block to receive Gyro data
- (void)startGyroUpdatesToQueue:(NSOperationQueue *)queue
 withHandler:(CMGyroHandler)handler;

typedef void (^CMGyroHandler)(CMGyroData *data, NSError *error);

Registering a block to receive combined Gyro/Accelerometer data
- (void)startDeviceMotionUpdatesToQueue:(NSOperationQueue *)queue
 withHandler:(CMDeviceMotionHandler)handler;

typedef void (^CMDeviceMotionHandler)(CMDeviceMotion *motion, NSError *error);
Stanford
CS193p

Fall 2010

Core Motion
Setting the rate at which your block gets executed
@property NSTimeInterval accelerometerUpdateInterval;
@property NSTimeInterval gyroUpdateInterval;
@property NSTimeInterval deviceMotionUpdateInterval;

It is okay to add multiple handler blocks
Even though you are only allowed one CMMotionManager.
However, each of the blocks will receive the data at the same rate (as set above).
(Multiple objects are allowed to poll at the same time as well, of course.)

Stanford
CS193p

Fall 2010

UISegmentedControl
Three different styles
@property UISegmentedControlStyle segmentedControlStyle;
UISegmentedControlStylePlain/Bordered/Bar

Designated initalizer takes an NSArray of NSStrings or UIImages
NSArray *itemsArray = [NSArray arrayWithObjects:@“First”, @“Second”, nil];
UISegmentedControl *myControl = [[UISegmentedControl alloc] initWithItems:itemsArray];

Or you can get/set items individually
- (void)setImage:(UIImage *)image forSegmentAtIndex:(int)index;
- (NSString *)titleForSegmentAtIndex:(int)index;

Set or get which item is selected
@property NSInteger selectedSegmentIndex;
Will be UISegmentedControlNoSegment if nothing is selected.

It’s a UIControl, so use target/action to monitor changes Stanford
CS193p

Fall 2010

Alerts
Two kinds of “pop up and ask the user something” mechanisms
Action Sheets
Alerts

Action Sheets
Usually slides in from the bottom of the screen on iPhone/iPod Touch, and in a popover on iPad.
Can be displayed from a tab bar, toolbar, bar button item or from a rectangular area in a view.
Usually asks questions that have more than two answers.
Think of action sheets as presenting “branching decisions” to the user (i.e. what next?).

Alerts
Pop up in the middle of the screen.
Usually ask questions with only two (or one) answers (e.g. OK/Cancel, Yes/No, etc.).
Very disruptive to your user-interface, so use carefully.
Often used for “asynchronous” problems (“connection reset” or “network fetch failed”).

Stanford
CS193p

Fall 2010

Stanford
CS193p

Fall 2010

UIActionSheet
Initializer
 -(id)initWithTitle:(NSString *)title
 delegate:(id <UIActionSheetDelegate>)delegate
 cancelButtonTitle:(NSString *)cancelButtonTitle
 destructiveButtonTitle:(NSString *)destructiveButtonTitle
 otherButtonTitles:(NSString *)otherButtonTitles, ...;

And you can add more buttons programmatically
- (void)addButtonWithTitle:(NSString *)buttonTitle;

Displaying the Action Sheet
UIActionSheet *actionSheet = [[UIActionSheet alloc] initWithTitle:...];
[actionSheet showInView:(UIView *)]; // centers the view on iPad (so don’t use this on iPad)
[actionSheet showFromRect:(CGRect) inView:(UIView *) animated:(BOOL)]; // good on iPad
[actionSheet showFromBarButtonItem:(UIBarButtonItem *) animated:(BOOL)];// good on iPad

Stanford
CS193p

Fall 2010

UIActionSheet
Finding out what the user has chosen via the delegate
- (void)actionSheet:(UIAlertView *)sender clickedButtonAtIndex:(NSInteger)index;

Remember from initializer that Cancel/Destructive are special
@property NSInteger cancelButtonIndex;
@property NSInteger destructiveButtonIndex;

Other indexes
@property NSInteger firstOtherButtonIndex;
@property NSInteger numberOfButtons;
- (NSString *)buttonTitleAtIndex:(NSInteger)index;
The “other button” indexes are in the order you specified them in initializer and/or added them

You can programmatically dismiss the action sheet as well
- (void)dismissWithClickedButtonIndex:(NSInteger)index animated:(BOOL)animated;
It is generally recommended to call this on UIApplicationDidEnterBackgroundNotification.
Remember also that you might be terminated while you are in the background, so be ready.

Stanford
CS193p

Fall 2010

UIAlertView
Initializer
 -(id)initWithTitle:(NSString *)title
 message:(NSString *)message // different from UIActionSheet
 delegate:(id <UIActionSheetDelegate>)delegate
 cancelButtonTitle:(NSString *)cancelButtonTitle
 otherButtonTitles:(NSString *)otherButtonTitles, ...;

And you can add more buttons programmatically
- (void)addButtonWithTitle:(NSString *)buttonTitle;

Displaying the Action Sheet
UIAlertView *alertView = [[UIAlertView alloc] initWithTitle:...];
[alertView show]; // different from UIActionSheet, always appears in center of screen

Rest of the mechanism is the same as UIActionSheet
Stanford
CS193p

Fall 2010

NSTimer
Scheduled invocation of a method in the main queue
NSTimer *timer = [NSTimer scheduledTimerWithTimeInterval:(NSTimeInterval)seconds
 target:self
 selector:@selector(doSomething:)
 userInfo:(id)anyObject
 repeats:(BOOL)yesOrNo];

Not “real time” since it can run only each time around run loop

Don’t do anything too time consuming in the main thread
You could dispatch another thread to do something time consuming, though.

Check documentation for more
For example, you can invalidate a repeating timer when you want it to stop.
Or you can create a timer that will fire at a specific time (NSDate) in the future.

Stanford
CS193p

Fall 2010

Delayed Perform
Delayed invocation in the current queue
[self performSelector:@selector(aMethod:)
 withObject:(id)argumentToAMethod
 afterDelay:(NSTimeInterval)wait];

Cancel previous requests
+ (void)cancelPreviousPerformRequestsWithTarget:(id)objectPerformWasSentTo
 selector:(SEL)aSelector
 object:(id)argument];

Example usage: batching up database changes into a single save
Instead of calling save: after each little change, we call the method delayedSave: below.
This way we only save: (via a doSave: method) after no changes have occured for 1s.
- (void)delayedSave:(NSManagedObjectContext *)ctxt {
 [NSObject cancelPreviousPerformRequestsWithTarget:self selector:@selector(doSave:) object:ctxt];
 [self performSelector:@selector(doSave:) withObject:ctxt afterDelay:1.0];
}

Stanford
CS193p

Fall 2010

