
Stanford CS193p
Developing Applications for iPhone 4, iPod Touch, & iPad

Fall 2010

Stanford
CS193p

Fall 2010

Today
Finish Demo from last lecture
After a quick review of what we did and a little bit more on drawing

What we’ve done so far
Created a custom UIView called FaceView
Set FaceView up to delegate its data (its smileyness) to some other object

What we’ll do today
Add our Model (an int!) to our Controller. Add a property to set our Model’s value.
Add outlets for our FaceView and a UISlider and add an action for our UISlider
Implement our Controller

Watch for how we ...
Use proper property syntax to manage the memory of our IBOutlets
Update our Model using a private property to protect its integrity and to keep our UI in sync
Use our custom view’s delegate property

Stanford
CS193p

Fall 2010

Today
Under the hood of “View-based Application” template in Xcode
What is actually going on there?

Application Lifecycle
Especially application:didFinishLaunchingWithOptions:

View Controller Lifecycle
initWithNibName:bundle: vs loadView
View appearance and disappearance methods
Other methods

Controllers of Controllers
UINavigationController in detail (others next week)

Demo
Quick look at HappinessAppDelegate.m
Create a new “Window-based app” called Psychologist which will reuse the Happiness MVC
UINavigationController

Stanford
CS193p

Fall 2010

View-based Application
What files does this template in Xcode create for us?
Assuming the name of our application is Happiness ...
main.m
HappinessViewController.[mh]
HappinessViewController.xib
MainWindow.xib
Happiness-Info.plist
HappinessAppDelegate.[mh]

main.m
Basically just the C entry point function int main(int argc, char *argv[])
Calls UIApplicationMain which creates a UIApplication object and starts the run loop
Also creates a catch-all autorelease pool (we’ll talk about autorelease pools in a few slides)

HappinessViewController.[mh] and .xib
You know what these are by now!

Stanford
CS193p

Fall 2010

View-based Application
What files does this template in Xcode create for us?
Assuming the name of our application is Happiness ...
main.m
HappinessViewController.[mh]
HappinessViewController.xib
MainWindow.xib
Happiness-Info.plist
HappinessAppDelegate.[mh]

MainWindow.xib
Contains a UIWindow (top of the view hierarchy) for things to be installed in
Can be (usually is) customizable per platform (we’ll talk about that next week).
Contains the Application Delegate (just an NSObject with its class set to HappinessAppDelegate)
Application Delegate also has a couple of outlets wired up (notably to HappinessViewController).

Happiness-Info.plist
A variety of application configuration properties. We’ Stanford

CS193p
Fall 2010

View-based Application
What files does this template in Xcode create for us?
Assuming the name of our application is Happiness ...
main.m
HappinessViewController.[mh]
HappinessViewController.xib
MainWindow.xib
Happiness-Info.plist
HappinessAppDelegate.[mh]

HappinessAppDelegate.[mh]
Has an instance variable for the UIWindow in MainWindow.xib called window.
Has an instance variable for HappinessViewController called viewController.
Has stubs for a lot of applicationDidThis and applicationWillDoThat.
Most importantly application:didFinishLaunchingWithOptions:.
This is the method where HappinessViewController’s view is added to the UIWindow.
Also where the UIWindow is made visible ... [window makeKeyAndVisible]
We will be modifying this method today to create a controller of controllers. Stanford

CS193p
Fall 2010

@interface HappinessAppDelegate : NSObject <UIApplicationDelegate>
{
 UIWindow *window;
 HappinessViewController *viewController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet HappinessViewController *viewController;

@end

Application Delegate
HappinessAppDelegate.h (header file for application delegate)

Stanford
CS193p

Fall 2010

This object implements the UIApplicationDelegate protocol.
The applicationDidDoThis and applicationWillDoThat methods.

@interface HappinessAppDelegate : NSObject <UIApplicationDelegate>
{
 UIWindow *window;
 HappinessViewController *viewController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet HappinessViewController *viewController;

@end

Application Delegate
HappinessAppDelegate.h (header file for application delegate)

Stanford
CS193p

Fall 2010

Instance variable/property/outlet pointing to
the top-level view for this application (UIWindow).

This is hooked up in MainWindow.xib.

@interface HappinessAppDelegate : NSObject <UIApplicationDelegate>
{
 UIWindow *window;
 HappinessViewController *viewController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet HappinessViewController *viewController;

@end

Application Delegate
HappinessAppDelegate.h (header file for application delegate)

Stanford
CS193p

Fall 2010

Instance variable/property/outlet pointing to
HappinessViewController (our Controller).

Also hooked up in MainWindow.xib.

Application Delegate
Method called in the application delegate when ready to run

Stanford
CS193p

Fall 2010

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{
 // Override point for customization after application launch.

 // Add the view controller's view to the window and display.
 [window addSubview:viewController.view];
 [window makeKeyAndVisible];

 return YES;
} This instance variable points to the instance of our Controller

HappinessViewController

Application Delegate
Method called in the application delegate when ready to run

Stanford
CS193p

Fall 2010

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{
 // Override point for customization after application launch.

 // Add the view controller's view to the window and display.
 [window addSubview:viewController.view];
 [window makeKeyAndVisible];

 return YES;
} Note the view property in UIViewController.

This is the top-level of the view hierarchy in its .xib file.
(which is HappinessViewController.xib in this case)

Application Delegate
Method called in the application delegate when ready to run

Stanford
CS193p

Fall 2010

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{
 // Override point for customization after application launch.

 // Add the view controller's view to the window and display.
 [window addSubview:viewController.view];
 [window makeKeyAndVisible];

 return YES;
}
We simply add that view as a subview of the top-level UIWindow.

Application Lifecycle
After application:didFinishLaunchingWithOptions:, then what?
Application enters a “run loop” repeatedly doing the following ...

An autorelease pool is created (more on this in a moment)
Application waits for events (touch, timed event, I/O, etc.)
Events are dispatched through UIKit objects and often on to your objects (via delegates, etc.)
When all is done, the screen is updated (appropriate drawRect: methods are called)
The autorelease pool is drained

Rinse, repeat.

Stanford
CS193p

Fall 2010

Autorelease Pools

Stanford
CS193p

Fall 2010Lau
nch

 ap
p

Loa
d m

ain
 nib

Wait
for

 ev
ent

Han
dle

eve
nt

Exit
 ap

p

App
 ini

tial
ize

d

Autorelease Pools

Stanford
CS193p

Fall 2010

 Pool

Lau
nch

 ap
p

Loa
d m

ain
 nib

Wait
for

 ev
ent

Han
dle

eve
nt

Exit
 ap

p

App
 ini

tial
ize

d

Pool created

Autorelease Pools

Stanford
CS193p

Fall 2010

 Pool

Lau
nch

 ap
p

Loa
d m

ain
 nib

Wait
for

 ev
ent

Han
dle

eve
nt

Exit
 ap

p

App
 ini

tial
ize

d

Pool created

Objects autoreleased
here go into pool

[object1 autorelease];

Autorelease Pools

Stanford
CS193p

Fall 2010

 Pool

Lau
nch

 ap
p

Loa
d m

ain
 nib

Wait
for

 ev
ent

Han
dle

eve
nt

Exit
 ap

p

App
 ini

tial
ize

d

Pool created

Objects autoreleased
here go into pool

Autorelease Pools

Stanford
CS193p

Fall 2010

 Pool

Lau
nch

 ap
p

Loa
d m

ain
 nib

Wait
for

 ev
ent

Han
dle

eve
nt

Exit
 ap

p

App
 ini

tial
ize

d

Pool created

Objects autoreleased
here go into pool

[object2 autorelease];

Autorelease Pools

Stanford
CS193p

Fall 2010

 Pool

Lau
nch

 ap
p

Loa
d m

ain
 nib

Wait
for

 ev
ent

Han
dle

eve
nt

Exit
 ap

p

App
 ini

tial
ize

d

Pool created

Objects autoreleased
here go into pool

Autorelease Pools

Stanford
CS193p

Fall 2010

 Pool

Lau
nch

 ap
p

Loa
d m

ain
 nib

Wait
for

 ev
ent

Han
dle

eve
nt

Exit
 ap

p

App
 ini

tial
ize

d

Pool created

Objects autoreleased
here go into pool

[object1 autorelease];
(again)

Autorelease Pools

Stanford
CS193p

Fall 2010

 Pool

Lau
nch

 ap
p

Loa
d m

ain
 nib

Wait
for

 ev
ent

Han
dle

eve
nt

Exit
 ap

p

App
 ini

tial
ize

d

Pool created

Objects autoreleased
here go into pool

Autorelease Pools

Stanford
CS193p

Fall 2010

 Pool [object1 release];

Lau
nch

 ap
p

Loa
d m

ain
 nib

Wait
for

 ev
ent

Han
dle

eve
nt

Exit
 ap

p

App
 ini

tial
ize

d

Pool drained

Pool created

Objects autoreleased
here go into pool

[object2 release];

[object1 release];

Autorelease Pools

Stanford
CS193p

Fall 2010

 Pool

Lau
nch

 ap
p

Loa
d m

ain
 nib

Wait
for

 ev
ent

Han
dle

eve
nt

Exit
 ap

p

App
 ini

tial
ize

d

Pool drained

Pool created

Objects autoreleased
here go into pool

What is the Window-based application template in Xcode?

@interface PsychologistAppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
}
@property (nonatomic, retain) IBOutlet UIWindow *window;
@end

Window-based Application

Stanford
CS193p

Fall 2010

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{
 // Override point for customization after application launch.
 [window makeKeyAndVisible];
 return YES;
}

We have to create our own view controller(s) here.
And then add a controller’s view to the window’s view hierarchy.

Application Delegate
Many methods in the UIApplication object’s delegate protocol
- (void)application:didFinishLaunchingWithOptions:(NSDictionary *)launchOptions;
- (void)applicationWillResignActive:
- (void)applicationDidBecomeActive:
- (void)applicationDidEnterBackground:
- (void)applicationWillEnterForeground:
- (BOOL)application:handleOpenURL:(NSURL *)url;
- (void)applicationDidReceiveMemoryWarning:
- (void)application:didReceiveLocalNotification:(UILocalNotification *)notification;
- (void)application:didReceiveRemoteNotification:(NSDictionary *)userInfo;
- (void)applicationWillTerminate:

We’ll cover some of these as the quarter progresses

Stanford
CS193p

Fall 2010

View Controller
You’ve probably got a pretty good handle on the basics of this
Class is UIViewController. It’s your Controller in an MVC grouping.

VERY important property in UIViewController
@property (retain) UIView *view;
This is a pointer to the top-level UIView in the Controller’s View (in MVC terms)

View Controllers have a “lifecycle” from creation to destruction
Your subclass gets opportunities to participate in that lifecycle by overriding methods

Stanford
CS193p

Fall 2010

View Controller
The lifecycle starts with alloc and initialization of course
- (id)initWithNibName:(NSString *)nibName bundle:(NSBundle *)aBundle;

Can I build a UIViewController’s view in code (i.e. w/o a .xib)?
Yes.
If no .xib is found using mechanism above, UIViewController will call - (void)loadView on itself.
loadView’s implementation MUST set the view property in the UIViewController.
Don’t implement loadView AND specify a .xib file (it’s undefined what this would mean). Stanford

CS193p
Fall 2010

This is UIViewController’s designated initializer.
The UIViewController tries to get its view from the specified .xib file called nibName.
If nibName is nil, it uses the name of the class as the nibName (HappinessViewController.xib).
The bundle allows you to specify one of a number of different .xib files (localization).
We’ll cover NSBundle later in the course when we talk about localization.
Passing nil for aBundle basically means “look in the Resources folder from Xcode.”
Initializing UIViewController with init is very common, it means nibName is nil & aBundle is nil.

View Controller
After the UIViewController is initialized, viewDidLoad is called
- (void)viewDidLoad;

We learned about his in the last lecture.
This is an exceptionally good place to put a lot of setup code.
But be careful because the geometry of your view (its bounds) is not set yet.
If you need to initialize something based on the geometry of the view, use the next method ...

Just before the view appears on screen, you get notified
- (void)viewWillAppear:(BOOL)animated;

When this is called, your bounds has been set (via your frame by your superview or some such).
Your view will probably only get “loaded” once, but it might appear and disappear a lot.
So don’t put something in this method that really wants to be in viewDidLoad.
Otherwise, you might be doing something over and over unnecessarily.
Use this to optimize performance by waiting until this method (i.e. just before view appears)
 to kick off an expensive operation (might have to put up a spinning “loading” icon though). Stanford

CS193p
Fall 2010

View Controller
And you get notified when you will disappear off screen too
- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated]; // call this in all the viewWill/Did methods
 // let’s be nice to the user and remember the scroll position they were at ...
 [self rememberScrollPosition]; // we’ll have to implement this
 // do some other clean up now that we’ve been removed from the screen
 [self saveDataToPermanentStore];
 // but be careful not to do anything time-consuming here, or app will be sluggish
 // maybe even kick off a thread to do what needs doing here
}

There are “did” versions of both of these methods too
- (void)viewDidAppear:(BOOL)animated;
- (void)viewDidDisappear:(BOOL)animated;

Stanford
CS193p

Fall 2010

View Controller
You already know about viewDidUnload
Called in low-memory situations.
Be sure to release your outlets (or other data tied to the view and its subviews) here.
- (void)viewDidUnload;

Stanford
CS193p

Fall 2010

View Controller
Reacting to device rotation
- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)anOrientation
{
 return (anOrientation == UIInterfaceOrientationPortrait) ||
 (anOrientation == UIInterfaceOrientationPortraitUpsideDown);
}

The default is to only allow UIInterfaceOrientationPortrait.
This UIViewController’s view is allowed to flip around if the device is turned upside down.
There is also UIInterfaceOrientationLandscapeLeft and Right.
It is certainly nice to return YES from this method for as many as possible orientations.
But make sure that your view can draw itself “wide and not-tall” as well as “tall and not-wide”
 if you are going to return YES for the landscape orientations.

Stanford
CS193p

Fall 2010

View Controller
When rotation actually happens
- (void)willRotateToInterfaceOrientation:(UIInterfaceOrientation)anOrientation
 duration:(NSTimeInterval)seconds;

- (void)didRotateFromInterfaceOrientation:(UIInterfaceOrientation)anOrientation;

@property UIInterfaceOrientation interfaceOrientation;

The property will have the current orientation when each of the above is called.

Stop doing anything expensive (e.g. an animation maybe?) in will and resume it in did.

The best way to handle rotations is to design your view to layout its subviews properly
 (i.e. set their frames) no matter what the aspect ratio of the view is.
Interface Builder can let you set “struts and springs” to help with layout flexibility.
Or the UIView method layoutSubviews can be overridden to do this (outside this course’s scope).
Check out how the Apple-provided Calculator app reacts to landscape!

Stanford
CS193p

Fall 2010

Controller of Controllers
Special View Controllers that manage a collection of other MVCs

UINavigationController
Manages a hierarchical flow of MVCs and presents them like a “stack of cards”
Very, very, very commonly used on the iPhone

UITabBarController
Manages a group of independent MVCs selected using tabs on the bottom of the screen

UISplitViewController
Side-by-side, master->detail arrangement of two MVCs
iPad only

Stanford
CS193p

Fall 2010

UINavigationController
Create with alloc/init

Put the UINavigationController’s view on screen
Remember that UINavigationController is itself a UIViewController, so it has a view property.
We simply call addSubview: to add the navigation controller’s view to the view hierarchy.
We almost always do this to the window in application:didFinishLaunchingWithOptions:.
But we might do it in other places on an iPad where there’s more screen real estate.
E.g., we might put a UINavigationController into a UISplitView (next week).
Then we’ll have a controller of controllers inside a controller of controllers!

Stanford
CS193p

Fall 2010

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{
 UINavigationController *myNavController = [[UINavigationController alloc] init];
 [window addSubview:myNavController.view];
 [window makeKeyAndVisible];
 return YES;
}

Something
missing
here

UINavigationController
UIView obtained from the view property of the
UIViewController which is on top of the “stack of cards”

Stanford
CS193p

Fall 2010

UINavigationController
UIView obtained from the view property of the
UIViewController which is on top of the “stack of cards”

NSString obtained from the title property of the
UIViewController which is on top of the “stack of cards”

Stanford
CS193p

Fall 2010

UINavigationController
UIView obtained from the view property of the
UIViewController which is on top of the “stack of cards”

NSString obtained from the title property of the
UIViewController which is on top of the “stack of cards”

An NSArray of UIBarButtonItems obtained from the
toolbarItems property of the UIViewController which is on
top of the “stack of cards”

Stanford
CS193p

Fall 2010

UINavigationController
UIView obtained from the view property of the
UIViewController which is on top of the “stack of cards”

NSString obtained from the title property of the
UIViewController which is on top of the “stack of cards”

An NSArray of UIBarButtonItems obtained from the
toolbarItems property of the UIViewController which is on
top of the “stack of cards”

NSString obtained from the title property of the next
UIViewController down in the stack of cards. It is being
displayed on a button provided by the navigation controller
which, when touched, will cause the next UIViewController
down in the stack of cards to move to the top of the stack
(i.e. become visible). This is a “back” button. Stanford

CS193p
Fall 2010

UINavigationController
How do we “push” a UIViewController onto the “stack of cards”?
- (void)pushViewController:(UIViewController *)vc animated:(BOOL)animated;

vc’s view will appear on-screen inside the middle area of the navigation controller’s UI.
Note that since the navigation controller has some UI of its own, vc’s view will be squished.
So you must make sure that the “springs and struts” of vc’s view are set properly.
This is what was “missing” from application:didFinishLaunchingWithOptions: two slides ago
We want to push one to get started before we put the UINavigationController’s view on screen

UIViewControllers know the UINavigationController they’re in
So it’s easy to push the next one on the stack from the one currently on the stack
- (IBAction)someAction:(UIButton *)sender
{
 UIViewController *vcToPush = ...;
 [self.navigationController pushViewController:vcToPush animated:YES];
}

animated: is YES except the very 1st push before the UINavigationController is on screen Stanford
CS193p

Fall 2010

This property in UIViewController returns the
UINavigationController it is in (if any, else nil).

UINavigationController
When does a pushed MVC come off the stack?
Usually because the user presses the “back” button (shown on a previous slide).
But it can happen programmatically as well with this UINavigationController instance method
- (void)popViewControllerAnimated:(BOOL)animated;

This does the same thing as clicking the back button.
Somewhat rare to call this method. Usually we want the user in control of navigating the stack.
But you might do it if some action the user takes in a view makes it irrelevant to be on screen.

Example
Let’s say we push an MVC which displays a database record and has a delete button w/this action:

Stanford
CS193p

Fall 2010

- (IBAction)deleteCurrentRecord:(UIButton *)sender
{
 // delete the record we are displaying
 // we just deleted the record we are displaying!
 // so it does not make sense to be on screen anymore, so pop
 [self.navigationController popViewControllerAnimated:YES];
}

How you pass data when you push is important
Do NOT use global variables (your AppDelegate is basically a global variable, by the way).
Do NOT let the pushed Controller have a pointer back to the pushing Controller (violates MVC).
Think of the pushed MVC construction as a “View” (in the MVC sense) of the pusher Controller.
Actually, probably even more strict. Set up the pushee and let it do its thing on its own.
If you absolutely must talk back to the pushee, use delegation (pusher sets itself as delegate)

Example

Stanford
CS193p

Fall 2010

UINavigationController

- (IBAction)someAction:(UIButton *)sender
{
 // this action is going to cause another MVC’s Controller to get pushed
 PusheeViewController *pushee = [[PusheeViewController alloc] init];
 pushee.someProperty = self.someValueThePusherKnows;
 pushee.someOtherProperty = self.someOtherValueThePusherKnows;
 pushee.delegate = self; // self is the pusher and it implements the right protocol
 [self.navigationController pushViewController:pushee animated:YES];
 // now we’re done (we’ll be pushed off screen) until we get popped back
 // in the meantime, perhaps we will be informed of something as pushee’s delegate
}

Next Time
iPad
How to take advantage of its platform-specific features.

Universal Applications
How to write a single app that will run on all platforms.

Gestures
Handling touch input (swipes, pans, pinches, etc.)

Stanford
CS193p

Fall 2010

Demo
HappinessAppDelegate.m
We’ll take a quick look at what the View-based Application made for us.

New application: Psychologist
Asks questions then comes up with a diagnosis.
We’ll create it using Window-based Application (i.e. Xcode will not create a Controller for us).

A new UIViewController which will push the Happiness MVC
Thus we’ll reuse the Happiness MVC, including FaceView

Create a UINavigationController & add it to our view hierarchy
We’ll do this in PsychologistAppDelegate.m’s application:didFinishLaunchingWithOptions:

Watch for ...
Window-based Application instead of View-based Application
Construct application’s appearance in application:didFinishLaunchingWithOptions: method
Properly initializing, then pushing a separate MVC construction onto the screen Stanford

CS193p
Fall 2010

