
Stanford CS193p
Developing Applications for iPhone 4, iPod Touch, & iPad

Fall 2010

Stanford
CS193p

Fall 2010

Today
Gesture Recognizers
How to get “input” into your UIView

Demo
Universal Application
UISplitViewController
Handling pinch gesture
Handling device rotation (shouldAutorotate... and springs and struts)

Stanford
CS193p

Fall 2010

UIGestureRecognizer
We’ve seen how to draw in our UIView, how do we get touches?
We can get notified of the raw touch events (touch down, moved, up).
Or we can react to certain, predefined “gestures.” This latter is the way to go.

Gestures are handled by the class UIGestureRecognizer
This class is “abstract.” We only actually use “concrete subclasses” of it.

There are two sides to using a gesture recognizer
1. Adding a gesture recognizer to a UIView to ask it to recognize that gesture.
2. Providing the implementation of a method to “handle” that gesture when it happens.

Usually #1 is done by a Controller
Though occasionally a UIView will do it to itself if it just doesn’t make sense without that gesture.

Usually #2 is provided by the UIView itself
But it would not be unreasonable for the Controller to do it.
Or for the Controller to decide it wants to handle a gesture differently than the view does. Stanford

CS193p
Fall 2010

UIGestureRecognizer
Adding a gesture recognizer to a UIView from a Controller

Stanford
CS193p

Fall 2010

- (void)viewDidLoad
{

}

UIGestureRecognizer
Adding a gesture recognizer to a UIView from a Controller

Stanford
CS193p

Fall 2010

- (void)viewDidLoad
{
 UIView *panView = ...; // this is one of the Controller’s views that we want to recognize “pan” gestures

}

UIGestureRecognizer
Adding a gesture recognizer to a UIView from a Controller

Stanford
CS193p

Fall 2010

- (void)viewDidLoad
{
 UIView *panView = ...; // this is one of the Controller’s views that we want to recognize “pan” gestures
 UIGestureRecognizer *pangr =
 [[UIPanGestureRecognizer alloc] initWithTarget:panView action:@selector(pan:)];

}

This is a concrete subclass of UIGestureRecognizer that recognizes
“panning” (moving something around with your finger).

There are, of course, other concrete subclasses (for swipe, pinch, tap, etc.).

UIGestureRecognizer
Adding a gesture recognizer to a UIView from a Controller

Stanford
CS193p

Fall 2010

- (void)viewDidLoad
{
 UIView *panView = ...; // this is one of the Controller’s views that we want to recognize “pan” gestures
 UIGestureRecognizer *pangr =
 [[UIPanGestureRecognizer alloc] initWithTarget:panView action:@selector(pan:)];

}

Note that we are specifying the view itself as the target to
handle a pan gesture when it is recognized. Thus the view will

be both the recognizer and the handler of the gesture.

The UIView does not have to handle the gesture. It could be, for
example, the controller that handles it. But it is most often that

the view that handles the gestures that it recognizes.

UIGestureRecognizer
Adding a gesture recognizer to a UIView from a Controller

Stanford
CS193p

Fall 2010

- (void)viewDidLoad
{
 UIView *panView = ...; // this is one of the Controller’s views that we want to recognize “pan” gestures
 UIGestureRecognizer *pangr =
 [[UIPanGestureRecognizer alloc] initWithTarget:panView action:@selector(pan:)];

}

This is the action method that will be sent to the target (the panView)
during the handling of the recognition of this gesture.

This version of the action message takes one argument (which is the
UIGestureRecognizer that sends the action), but there is another

version that takes no arguments if you’d prefer.

We’ll look at the implementation of this method in a moment.

UIGestureRecognizer
Adding a gesture recognizer to a UIView from a Controller

Stanford
CS193p

Fall 2010

- (void)viewDidLoad
{
 UIView *panView = ...; // this is one of the Controller’s views that we want to recognize “pan” gestures
 UIGestureRecognizer *pangr =
 [[UIPanGestureRecognizer alloc] initWithTarget:panView action:@selector(pan:)];
 [panView addGestureRecognizer:pangr];

}

If we don’t do this, then even though the panView
implements pan:, it would never get called because we
would have never added this gesture recognizer to the

view’s list of gestures that it recognizes.

Think of this as “turning the handling of this gesture on.”

UIGestureRecognizer
Adding a gesture recognizer to a UIView from a Controller

Stanford
CS193p

Fall 2010

- (void)viewDidLoad
{
 UIView *panView = ...; // this is one of the Controller’s views that we want to recognize “pan” gestures
 UIGestureRecognizer *pangr =
 [[UIPanGestureRecognizer alloc] initWithTarget:panView action:@selector(pan:)];
 [panView addGestureRecognizer:pangr];
 [pangr release];
}

And, of course, we alloc’ed this concrete gesture recognizer, so we must
release it (which we can do now because we’ve added it to the view’s list
of gestures to recognize, so the view has taken ownership of this object).

UIGestureRecognizer
Adding a gesture recognizer to a UIView from a Controller

Stanford
CS193p

Fall 2010

- (void)viewDidLoad
{
 UIView *panView = ...; // this is one of the Controller’s views that we want to recognize “pan” gestures
 UIGestureRecognizer *pangr =
 [[UIPanGestureRecognizer alloc] initWithTarget:panView action:@selector(pan:)];
 [panView addGestureRecognizer:pangr];
 [pangr release];
}

Only UIView instances can recognize a gesture (because UIViews handle all touch input).
But any object can tell a UIView to recognize a gesture (by adding a recognizer to the UIView).
And any object can handle the recognition of a gesture (by being the target of the gesture’s action).
(But usually the UIView handles the gestures it is asked to recognize.)

UIGestureRecognizer
How do we implement the target of a gesture recognizer?
Each concrete class provides some methods to help you do that.

For example, UIPanGestureRecognizer provides 3 methods
- (CGPoint)translationInView:(UIView *)aView;
- (CGPoint)velocityInView:(UIView *)aView;
- (void)setTranslation:(CGPoint)translation inView:(UIView *)aView;

Also, the base class, UIGestureRecognizer provides this property
@property (readonly) UIGestureRecognizerState state;
Gesture Recognizers sit around in the state Possible until they start to be recognized
Then the either go to Recognized (for discrete gestures like a tap)
Or they go to Began (for continuous gestures like a pan)
At any time, the state can change to Failed (so watch out for that)
If the gesture is continuous, it’ll move on to the Changed and eventually the Ended state
Continuous can also go to Cancelled state (if the recognizer realizes it’s not this gesture after all)Stanford

CS193p
Fall 2010

UIGestureRecognizer
So, given these methods, what would pan: look like?

Stanford
CS193p

Fall 2010

- (void)pan:(UIPanGestureRecognizer *)recognizer
{

}

UIGestureRecognizer
So, given these methods, what would pan: look like?

Stanford
CS193p

Fall 2010

- (void)pan:(UIPanGestureRecognizer *)recognizer
{
 if ((sender.state == UIGestureRecognizerStateChanged) ||
 (sender.state == UIGestureRecognizerStateEnded)) {

}
}

We’re going to update our view
every time the touch moves
(and when the touch ends).
This is “smooth panning.”

UIGestureRecognizer
So, given these methods, what would pan: look like?

Stanford
CS193p

Fall 2010

- (void)pan:(UIPanGestureRecognizer *)recognizer
{
 if ((sender.state == UIGestureRecognizerStateChanged) ||
 (sender.state == UIGestureRecognizerStateEnded)) {
 CGPoint translation = [recognizer translationInView:self];

}
}

This is how much the gesture moved.
The new movement is added to the translation that was there before.
Obviously the “translation that was there before” is zero at the start.

UIGestureRecognizer
So, given these methods, what would pan: look like?

Stanford
CS193p

Fall 2010

- (void)pan:(UIPanGestureRecognizer *)recognizer
{
 if ((sender.state == UIGestureRecognizerStateChanged) ||
 (sender.state == UIGestureRecognizerStateEnded)) {
 CGPoint translation = [recognizer translationInView:self];
 // move something in myself (I’m a UIView) by translation.x and translation.y
 // for example, if I were a graph and my origin was set by an @property called origin
 self.origin = CGPointMake(self.origin.x+translation.x, self.origin.y+translation.y);

}
}

UIGestureRecognizer
So, given these methods, what would pan: look like?

Stanford
CS193p

Fall 2010

- (void)pan:(UIPanGestureRecognizer *)recognizer
{
 if ((sender.state == UIGestureRecognizerStateChanged) ||
 (sender.state == UIGestureRecognizerStateEnded)) {
 CGPoint translation = [recognizer translationInView:self];
 // move something in myself (I’m a UIView) by translation.x and translation.y
 // for example, if I were a graph and my origin was set by an @property called origin
 self.origin = CGPointMake(self.origin.x+translation.x, self.origin.y+translation.y);
 [recognizer setTranslation:CGPointZero inView:self];

Here we are resetting the “translation that was there before” to zero.

Now each time this is called, we’ll get the “incremental” movement of
the gesture (which is what we want). If we wanted the “cumulative”

movement of the gesture, we would not include this line of code.

}
}

UIGestureRecognizer
So, given these methods, what would pan: look like?

Stanford
CS193p

Fall 2010

- (void)pan:(UIPanGestureRecognizer *)recognizer
{
 if ((sender.state == UIGestureRecognizerStateChanged) ||
 (sender.state == UIGestureRecognizerStateEnded)) {
 CGPoint translation = [recognizer translationInView:self];
 // move something in myself (I’m a UIView) by translation.x and translation.y
 // for example, if I were a graph and my origin was set by an @property called origin
 self.origin = CGPointMake(self.origin.x+translation.x, self.origin.y+translation.y);
 [recognizer setTranslation:CGPointZero inView:self];

}
}

Other Concrete Gestures
UIPinchGestureRecognizer
@property CGFloat scale; // note that this is NOT readonly (can reset each movement)
@property (readonly) CGFloat velocity; // note that this IS readonly; scale factor per second

UIRotationGestureRecognizer
@property CGFloat rotation; // note that this is NOT readonly; in radians
@property (readonly) CGFloat velocity; // note that this IS readonly; radians per second

UISwipeGestureRecognizer
This one you “set up” (w/the following) to find certain swipe types, then look for Recognized state
@property UISwipeGestureRecognizerDirection direction; // what direction swipes you want
@property NSUInteger numberOfTouchesRequired; // two finger swipes? or just one finger? more?

UITapGestureRecognizer
Set up (w/the following) then look for Recognized state
@property NSUInteger numberOfTapsRequired; // single tap or double tap or triple tap, etc.
@property NSUInteger numberOfTouchesRequired; // e.g., require two finger tap? Stanford

CS193p
Fall 2010

Coming Up
Demo
Universal Application
UISplitViewController
Handling pinch gesture
Handling device rotation (shouldAutorotate... and springs and struts)

Homework
Make your Calculator work on iPad (and still work on iPhone)
Use a UISplitViewController on iPad
Support pinch (change scale), pan (change origin) and tap (reset origin) gestures
Use NSUserDefaults to maintain some application state across launches

Next Week
UITableView
UIScrollView
UIImageView

Stanford
CS193p

Fall 2010

