Weekly Syllabus

1. Scalability: (Jan.)
2. Agile Practices
3. Ecology/Mashups
4. Browser/Client
5. Data/Server: (Feb.)
6. Security/Privacy
7. Analytics
8. Cloud/Map-Reduce
9. Published APIs: (Mar.)*
10. Future

* PROJECT DUE DATE
Cloud Recap

- Progressive commoditization of IT services
- Choose based on value creation in project
- Build it, Scale it, Code it, Customize it
 - Google has most efficient data centers
 - Ning, SocialGo offer customizable communities
Server & Data Scaling

- Traditionally depended on next hardware release
- AltaVista search engine
 - limited to the most expensive DEC Alpha box
- Original eBay build-out
 - massive SUN/Teradata clusters
Map/Reduce

Background
- Google founders’ disdain for traditional RDBMS
- Original paper published 5 years ago

Main Features
- limitless scalability on cheap hardware
- real time fault tolerance
Google Example

Key ‘contrarian’ insight

- scaling on cheap hardware is best
- need generic API to divide and conquer

If McDonald’s needed a top chef in each store

- how much more would it cost?
- how many restaurants would it now have?
Hadoop

- First Open Source implementation
- by Doug Cutting also of Lucene fame
- **Storage, Execution, Management components**
- **HDFS, HBase, Hive**
- **MapReduce**
- **Pig, ZooKeeper**
1-2-3

- Configure server clusters
- Code Map & Reduce classes
 - input list of (key, value) pairs
 - output set of (key, value) pairs
- Start HDFS, MapReduce servers
Execution Schema
Execution Schema

apache ↔ browser
Execution Schema

master <-> apache <-> browser
Execution Schema
Execution Schema
Execution Schema
Execution Schema
Example: Word Count

- `cat data.txt | sort | uniq -c`
- When `data.txt` is huge
 - split it into even chunks
 - sort chunks (or better yet, prefix sort)
 - count on a per item/prefix basis
 - return result
Insights

- Relates to network switching, routing concepts
- DB queries can generate initial (key, value) pairs
- Master restarts failed map, reduce tasks
 - ping nodes after first results start coming in
- Rule of thumb
 - data / 64MB ≈ # mappers > # reducers
Additional Details

- Storing intermediate results
 - RAM/File systems on mappers, reducers
 - Can combine, e.g., duplicate removal, on mappers
 - Partition mapper results by key for reducers
 - Backup masters possible (not frequently used)
 - Caching becomes a critical system component
Caching is a Huge Win

[Diagram showing data flow and cache usage between master, apache, and browser]
Current Status

- Current production development at Google
 - entirely Map/Reduce
- Yahoo runs ~4000 node Hadoop cluster
 - 100TB data sorting record < 3 hours
- Facebook has ~1000 node Hadoop install
- Amazon offers Elastic MapReduce
Controversy?

- DB community on both sides of argument
 - DeWitt, Stonebraker: a giant step backwards
 - Abadi: HadoopDB
- In web apps, however
 - DBs are used for persistence, not transactions
 - MapReduce provides scale and fault tolerance
Future Directions

- AsterData, Google
- hybrid Map/Reduce DBs, Data Warehouses
- HadoopDB
- open source PostgreSQL & Hadoop hybrid
- NoSQL movement
Data Glut

✦ Over 3 million English Wikipedia articles
✦ 1000+ new articles a day
✦ unthinkable to use without search
✦ Facebook Data Warehouse adds 15 TB a day
✦ in 2007 it was 15 TB total
✦ Google has several multi Petabyte data stores
Here to Stay

- Easy to learn, easy to maintain
 - very incremental learning curve
- Scales as fast as data is growing
 - only option for large data mining tasks
- Accommodates multiple persistence backends
Worth Checking Out

- Hadoop

- Wikimedia Report Card
 - http://stats.wikimedia.org/reportcard/

- Data blog
 - http://www.dbms2.com/
Q & A Topics

- Merging DB optimizers and Map/Reduce
- Managing multi stage Map/Reduce pipelines
- Map/Reduce and virtual machines