
JavaScript, DOM, and events

Michael Chang

Spring 2023

Plan for today

The DOM

Traversing, adding, and removing elements

Buttons, inputs and events

<button>, <label>, <input>, event handlers

Example: unit converter

Document Object Model (DOM)

JS can access the web page using the DOM

Each element is an Element (which is also a Node)

Can walk the tree and add/change/remove elements

Builtin variables

window: info/control the browser window

The "global object"; you can jam your global vars here

document: access the DOM

document.head, document.body

https://developer.mozilla.org/en-US/docs/Web/API/Element
https://developer.mozilla.org/en-US/docs/Web/API/Node
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Document

Traversing the tree

.parentElement

Parent element

.children

A Collection of children elements

coll.length, coll[i]

Access collection as an array

coll[id] (or coll.id)

Access elements in collection by id

Best practice: don't use for generally finding elements

Will see better way later

But these are good for working with a specific subtree

https://developer.mozilla.org/en-US/docs/Web/API/Node/parentElement
https://developer.mozilla.org/en-US/docs/Web/API/ParentNode/children
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCollection

Document Object Model (DOM)

HTML attributes accessed as JS properties

src, href, id

elem.textContent

Get/set the text inside an element

Best practice: avoid elem.innerHTML

Lets you get/set raw HTML from JS, leads to security issues

Aside: alert(message)

Display message in browser

Recommendation: not great for bigger/production UX, but very useful for
debugging/examples/quick things

https://developer.mozilla.org/en-US/docs/Web/API/Window/alert

Adding/removing Elements

document.createElement(tag)

Create new element with tag (e.g. "img")

node.cloneNode(deep)

Shallow or deep copy of node

Not added to tree

parent.prepend(child)

parent.append(child)

Add child (element or string to the start/end of parent

Recommendation: don't use appendChild and similar Node methods

.remove()

Remove node from the tree (still valid object)

https://developer.mozilla.org/en-US/docs/Web/API/Document/createElement
https://developer.mozilla.org/en-US/docs/Web/API/Node/cloneNode
https://developer.mozilla.org/en-US/docs/Web/API/Element/prepend
https://developer.mozilla.org/en-US/docs/Web/API/Element/append
https://developer.mozilla.org/en-US/docs/Web/API/Element/remove

HTML interactors

<button>: a button

Best practice: don't use <input type="button">

Children can be anything (text, images)

<input>: get user input

Leaf element (no closing tag)

type determines input type (default to text)

text, checkbox, radio

Best practice: many useful newer types: number, email, date, ...

<label>: label an input

Wrap the <input> or use for attribute with an id

Best practice: always use <label>; don’t just put text next to the input

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/label

HTML forms

<form>: wrap a collection of interactors

Use <button type="button">

Default is a submit button

Access forms by id through document.forms

Form instance is a map of interactors (keys are ids)

let form = document.forms[formId];

form.myButton.addEventListener("click", (event) => {

 console.log(form.myInput.value);

});

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form

Handling events

elem.addEventListener(type, fn)

type is the event to handle (e.g. click)

fn is a function to handle the event

Note: functions can be passed as values!

Event types

Mouse: click, mouseenter, mouseleave

Keyboard: keydown, keyup, keypress

Interaction: change, input, focus, blur

Best practice: semantic elements

Use the right element, e.g. don't add click handler to paragraph

Otherwise, may be impossible to use with keyboard/touch/screen reader

https://developer.mozilla.org/en-US/docs/Web/Events

Handling events

const handleClick = (event) => {

 alert("Button was clicked!");

};

let button = document.body.clickme;

button.addEventListener("click", handleClick);

event argument

Get info about the event

event.currentTarget

The element the listener was added to that triggered the event

Recommendation: event.target is slightly different; stick to currentTarget

const handleClick = (event) => {

 let elem = event.currentTarget;

 elem.textContent = "I was clicked!";

};

https://developer.mozilla.org/en-US/docs/Web/API/Event/currentTarget

Events and classes

class App {

 constructor() {

 this._form = document.forms.myForm;

 this._form.myButton.addEventListener("click",

 this._handler);

 }

 _handler(event) { /* ... */ }

}

(This doesn't work!)

this keyword

Problem

elem.addEventListener(..., this._method);

When _method is called, this isn’t the instance!

Cause (summary)

this gets its value at time of call

obj.foo() => this === obj

foo() => this === undefined

let bar = obj.foo; // Not a call, just assigns the fn

bar(); => this === undefined

this keyword

Solution

elem.addEventListener(...,

 this._method.bind(this));

bind sets/"locks" this for future calls

Another solution

In constructor:

this._method = this._method.bind(this);

Best practice: Do this for all event handlers and callbacks

Not needed for methods called normally

Events and classes

class App {

 constructor() {

 this._handler = this._handler.bind(this);

 this._form = document.forms.myForm;

 this._form.myButton.addEventListener("click",

 this._handler);

 }

 _handler(event) { /* ... */ }

}

Style tips for classes

Bind callbacks in constructor

To avoid repetition or forgetting

Encapsulation

Instance variables that "don't make sense" outside of class should be
"private"

But trivial getters/setters are probably unnecessary

Use cases

"Components": Manage DOM/page functionality

"Models": Manage data

Sometimes it makes sense to mix them (if very simple data,

Summary

So far

Dynamic web pages through DOM manipulation

User input and event handling

Before next time

assign1 out, please take a look

Post on Ed, come to OH with questions

Next week

More event/DOM examples

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

